IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p166-209.html
   My bibliography  Save this article

Hybrid censoring: Models, inferential results and applications

Author

Listed:
  • Balakrishnan, N.
  • Kundu, Debasis

Abstract

A hybrid censoring scheme is a mixture of Type-I and Type-II censoring schemes. In this review, we first discuss Type-I and Type-II hybrid censoring schemes and associated inferential issues. Next, we present details on developments regarding generalized hybrid censoring and unified hybrid censoring schemes that have been introduced in the literature. Hybrid censoring schemes have been adopted in competing risks set-up and in step-stress modeling and these results are outlined next. Recently, two new censoring schemes, viz., progressive hybrid censoring and adaptive progressive censoring schemes have been introduced in the literature. We discuss these censoring schemes and describe inferential methods based on them, and point out their advantages and disadvantages. Determining an optimal hybrid censoring scheme is an important design problem, and we shed some light on this issue as well. Finally, we present some examples to illustrate some of the results described here. Throughout the article, we mention some open problems and suggest some possible future work for the benefit of readers interested in this area of research.

Suggested Citation

  • Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:166-209
    DOI: 10.1016/j.csda.2012.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001685
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    2. Park, Sangun & Balakrishnan, N., 2009. "On simple calculation of the Fisher information in hybrid censoring schemes," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1311-1319, May.
    3. N. Balakrishnan & G. Iliopoulos, 2009. "Stochastic monotonicity of the MLE of exponential mean under different censoring schemes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 753-772, September.
    4. Balakrishnan, N. & Kateri, M., 2008. "On the maximum likelihood estimation of parameters of Weibull distribution based on complete and censored data," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2971-2975, December.
    5. N. Balakrishnan & G. Iliopoulos, 2010. "Stochastic monotonicity of the MLEs of parameters in exponential simple step-stress models under Type-I and Type-II censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(1), pages 89-109, July.
    6. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    7. Ng, H. K. T. & Chan, P. S. & Balakrishnan, N., 2002. "Estimation of parameters from progressively censored data using EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 371-386, June.
    8. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    9. Yu-Pin Lin & TaChen Liang & Wen-Tao Huang, 2002. "Bayesian Sampling Plans for Exponential Distribution Based on Type I Censoring Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 100-113, March.
    10. Wang, Yanhua & He, Shuyuan, 2005. "Fisher information in censored data," Statistics & Probability Letters, Elsevier, vol. 73(2), pages 199-206, June.
    11. N. Balakrishnan & Qihao Xie & D. Kundu, 2009. "Exact inference for a simple step-stress model from the exponential distribution under time constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 251-274, March.
    12. Debasis Kundu & Rameshwar Gupta, 2007. "Analysis of Hybrid Life-tests in Presence of Competing Risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(2), pages 159-170, February.
    13. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    14. Yao Zhang & William Q. Meeker, 2005. "Bayesian life test planning for the Weibull distribution with given shape parameter," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 61(3), pages 237-249, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    2. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    3. Park, Sangun & Balakrishnan, N., 2009. "On simple calculation of the Fisher information in hybrid censoring schemes," Statistics & Probability Letters, Elsevier, vol. 79(10), pages 1311-1319, May.
    4. Julian Górny & Erhard Cramer, 2020. "On Exact Inferential Results for a Simple Step-Stress Model Under a Time Constraint," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 201-239, November.
    5. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    6. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    7. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    8. Ritwik Bhattacharya, 2020. "Implementation of compound optimal design strategy in censored life-testing experiment," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1029-1050, December.
    9. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    10. Lin, Chien-Tai & Chou, Cheng-Chieh & Huang, Yen-Lung, 2012. "Inference for the Weibull distribution with progressive hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 451-467.
    11. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    12. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    13. Essam A. Ahmed, 2017. "Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1576-1608, July.
    14. Benjamin Laumen & Erhard Cramer, 2021. "k‐step stage life testing," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 203-233, May.
    15. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    16. van Bentum, Thomas & Cramer, Erhard, 2019. "Stochastic monotonicity of MLEs of the mean for exponentially distributed lifetimes under hybrid censoring," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 1-8.
    17. Balakrishnan, N. & Saleh, H.M., 2011. "Relations for moments of progressively Type-II censored order statistics from half-logistic distribution with applications to inference," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2775-2792, October.
    18. Ahmed Soliman & N. Abou-elheggag & A. Abd ellah & A. Modhesh, 2012. "Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data," METRON, Springer;Sapienza Università di Roma, vol. 70(1), pages 1-25, April.
    19. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    20. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:166-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.