IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v81y2019i1d10.1007_s13571-019-00195-w.html
   My bibliography  Save this article

Fitting a pth Order Parametric Generalized Linear Autoregressive Multiplicative Error Model

Author

Listed:
  • N. Balakrishna

    (Cochin University of Science and Technology)

  • H. L. Koul

    (Michigan State University)

  • M. Ossiander

    (Oregon State University)

  • L. Sakhanenko

    (Michigan State University)

Abstract

This paper is concerned with the problem of fitting a generalized linear model to the conditional mean function of multiplicative error time series models. These models are particularly suited to model nonnegative time series such as the duration between trades at a stock exchange and volume transactions. The proposed test, based on a marked residual empirical process whose marks are suitably defined residuals and which jumps at the estimated indices, is shown to be asymptotically distribution free.

Suggested Citation

  • N. Balakrishna & H. L. Koul & M. Ossiander & L. Sakhanenko, 2019. "Fitting a pth Order Parametric Generalized Linear Autoregressive Multiplicative Error Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 103-122, September.
  • Handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-019-00195-w
    DOI: 10.1007/s13571-019-00195-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-019-00195-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-019-00195-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    2. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    3. Mnatsakanov, Robert & Sarkisian, Khachatur, 2012. "Varying kernel density estimation on R+," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1337-1345.
    4. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    5. Winfried Stute & Li‐Xing Zhu, 2002. "Model Checks for Generalized Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 535-545, September.
    6. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    7. Nikolaus Hautsch, 2012. "Econometrics of Financial High-Frequency Data," Springer Books, Springer, number 978-3-642-21925-2, June.
    8. Koul, Hira L. & Perera, Indeewara & Silvapulle, Mervyn J., 2012. "Lack-Of-Fit Testing Of The Conditional Mean Function In A Class Of Markov Multiplicative Error Models," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1283-1312, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balakrishna, N. & Kim, Jiwoong & Koul, Hira L., 2020. "Lack-of-fit of a parametric measurement error AR(1) model," Statistics & Probability Letters, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hira L. Koul & Indeewara Perera & Narayana Balakrishna, 2023. "A class of Minimum Distance Estimators in Markovian Multiplicative Error Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 87-115, May.
    2. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    3. Perera, Indeewara & Koul, Hira L., 2017. "Fitting a two phase threshold multiplicative error model," Journal of Econometrics, Elsevier, vol. 197(2), pages 348-367.
    4. Guo, Bin & Li, Shuo, 2018. "Diagnostic checking of Markov multiplicative error models," Economics Letters, Elsevier, vol. 170(C), pages 139-142.
    5. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    6. Ng, F.C. & Li, W.K. & Yu, Philip L.H., 2016. "Diagnostic checking of the vector multiplicative error model," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 86-97.
    7. Ke, Rui & Lu, Wanbo & Jia, Jing, 2021. "Evaluating multiplicative error models: A residual-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    8. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    9. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. Nikolaus Hautsch & Vahidin Jeleskovic, 2008. "Modelling High-Frequency Volatility and Liquidity Using Multiplicative Error Models," SFB 649 Discussion Papers SFB649DP2008-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    12. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Local adaptive multiplicative error models for high-frequency forecasts," SFB 649 Discussion Papers 2012-031, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    14. Patrick W Saart & Jiti Gao & Nam Hyun Kim, 2014. "Econometric Time Series Specification Testing in a Class of Multiplicative Error Models," Monash Econometrics and Business Statistics Working Papers 1/14, Monash University, Department of Econometrics and Business Statistics.
    15. Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.
    16. Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Yuanhua Feng & Sarah Forstinger & Christian Peitz, 2013. "On the iterative plug-in algorithm for estimating diurnal patterns of financial trade durations," Working Papers CIE 66, Paderborn University, CIE Center for International Economics.
    18. Wolfgang K. Härdle & Nikolaus Hautsch & Andrija Mihoci, 2015. "Local Adaptive Multiplicative Error Models for High‐Frequency Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 529-550, June.
    19. Andrija Mihoci & Christopher Hian-Ann Ting & Meng-Jou Lu & Kainat Khowaja, 2022. "Adaptive order flow forecasting with multiplicative error models," Digital Finance, Springer, vol. 4(1), pages 89-108, March.
    20. Aknouche, Abdelhakim & Almohaimeed, Bader & Dimitrakopoulos, Stefanos, 2020. "Periodic autoregressive conditional duration," MPRA Paper 101696, University Library of Munich, Germany, revised 08 Jul 2020.
    21. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:81:y:2019:i:1:d:10.1007_s13571-019-00195-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.