Lack-of-fit of a parametric measurement error AR(1) model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2020.108872
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
- Pfeffermann, Danny & Feder, Moshe & Signorelli, David, 1998. "Estimation of Autocorrelations of Survey Errors with Application to Trend Estimation in Small Areas," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 339-348, July.
- Tanaka, Katsuto, 2002. "A Unified Approach To The Measurement Error Problem In Time Series Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 278-296, April.
- Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
- Staudenmayer, John & Buonaccorsi, John P., 2005. "Measurement Error in Linear Autoregressive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 841-852, September.
- N. Balakrishna & H. L. Koul & M. Ossiander & L. Sakhanenko, 2019. "Fitting a pth Order Parametric Generalized Linear Autoregressive Multiplicative Error Model," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 103-122, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Colling, Benjamin & Van Keilegom, Ingrid, 2016. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," LIDAM Discussion Papers ISBA 2016031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Estate V. Khmaladze, 2021. "Distribution-free testing in linear and parametric regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1063-1087, December.
- Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2023.
"Optimal minimax rates of specification testing with data-driven bandwidth,"
Econometric Reviews, Taylor & Francis Journals, vol. 42(6), pages 487-512, June.
- Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2021. "Optimal Minimax Rates of Specification Testing with Data-driven Bandwidth," KIER Working Papers 1053, Kyoto University, Institute of Economic Research.
- Dong, Hao & Taylor, Luke, 2022.
"Nonparametric Significance Testing In Measurement Error Models,"
Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
- Hao Dong & Luke Taylor, 2020. "Nonparametric Significance Testing in Measurement Error Models," Departmental Working Papers 2003, Southern Methodist University, Department of Economics.
- Adam D. Bull, 2015. "Semimartingale detection and goodness-of-fit tests," Papers 1506.00088, arXiv.org, revised Jun 2016.
- Kloodt, Nick & Neumeyer, Natalie, 2020. "Specification tests in semiparametric transformation models — A multiplier bootstrap approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
- Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2022.
"Optimal minimax rates against nonsmooth alternatives [Optimal testing for additivity in multiple nonparametric regression],"
The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 322-339.
- Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2020. "Optimal Minimax Rates against Non-smooth Alternatives," KIER Working Papers 1051, Kyoto University, Institute of Economic Research.
- Escanciano, Juan Carlos & Pardo-Fernandez, Juan Carlos & Van Keilegom, Ingrid, 2015. "Asymptotic distribution-free tests for semiparametric regressions," LIDAM Discussion Papers ISBA 2015001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018.
"Specification Testing of Production in a Stochastic Frontier Model,"
Sustainability, MDPI, vol. 10(9), pages 1-10, August.
- Xu Guo & Gao-Rong Li & Wing-Keung Wong & Michael McAleer, 2017. "Specification Testing of Production in a Stochastic Frontier Model," Documentos de Trabajo del ICAE 2017-23, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2017. "Specification Testing of Production in a Stochastic Frontier Model," Tinbergen Institute Discussion Papers 17-097/III, Tinbergen Institute.
- Guo, X. & Li, G.-R. & McAleer, M.J. & Wong, W.-K., 2017. "Specification Testing of Production in a Stochastic Frontier Model," Econometric Institute Research Papers EI 2017-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
- Justin Chown & Cédric Heuchenne & Ingrid Van Keilegom, 2020. "The nonparametric location-scale mixture cure model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1008-1028, December.
- Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
- Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
- Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.
- Ana López-Cheda & M. Amalia Jácome & Ricardo Cao, 2017. "Nonparametric latency estimation for mixture cure models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 353-376, June.
- Colling, Benjamin & Van Keilegom, Ingrid, 2017. "Goodness-of-fit tests in semiparametric transformation models using the integrated regression function," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 10-30.
- José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
More about this item
Keywords
Marked empirical process; Martingale transform;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:166:y:2020:i:c:s0167715220301759. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.