Posterior Contraction Rates of Density Derivative Estimation
Author
Abstract
Suggested Citation
DOI: 10.1007/s13171-017-0105-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
- repec:dau:papers:123456789/7335 is not listed on IDEAS
- Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
- N. Hosseinioun & H. Doosti & H. Nirumand, 2012. "Nonparametric estimation of the derivatives of a density by the method of wavelet for mixing sequences," Statistical Papers, Springer, vol. 53(1), pages 195-203, February.
- Weining Shen & Surya T. Tokdar & Subhashis Ghosal, 2013. "Adaptive Bayesian multivariate density estimation with Dirichlet mixtures," Biometrika, Biometrika Trust, vol. 100(3), pages 623-640.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Feb 2025.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
- José J. Quinlan & Fernando A. Quintana & Garritt L. Page, 2021. "On a class of repulsive mixture models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 445-461, June.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian multiple imputation for regression models with missing mixed continuous–discrete covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 803-825, June.
- Hassan Sharghi Ghale-Joogh & S. Mohammad E. Hosseini-Nasab, 2021. "On mean derivative estimation of longitudinal and functional data: from sparse to dense," Statistical Papers, Springer, vol. 62(4), pages 2047-2066, August.
- Yi, Taihe & Wang, Zhengming, 2017. "Bayesian sieve method for piece-wise smooth regression," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 5-11.
- repec:cte:wsrepe:ws1504 is not listed on IDEAS
- Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
- Weining Shen & Subhashis Ghosal, 2015. "Adaptive Bayesian Procedures Using Random Series Priors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1194-1213, December.
- A. R. Linero, 2017. "Bayesian nonparametric analysis of longitudinal studies in the presence of informative missingness," Biometrika, Biometrika Trust, vol. 104(2), pages 327-341.
- Minerva Mukhopadhyay & Didong Li & David B. Dunson, 2020. "Estimating densities with non‐linear support by using Fisher–Gaussian kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1249-1271, December.
- Norets, Andriy & Pelenis, Justinas, 2022. "Adaptive Bayesian estimation of conditional discrete-continuous distributions with an application to stock market trading activity," Journal of Econometrics, Elsevier, vol. 230(1), pages 62-82.
- Julyan Arbel & Riccardo Corradin & Bernardo Nipoti, 2021. "Dirichlet process mixtures under affine transformations of the data," Computational Statistics, Springer, vol. 36(1), pages 577-601, March.
- Gwangsu Kim & Yongdai Kim & Taeryon Choi, 2017. "Bayesian Analysis of the Proportional Hazards Model with Time-Varying Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 524-544, June.
- Konstantin Eckle & Nicolai Bissantz & Holger Dette & Katharina Proksch & Sabrina Einecke, 2018. "Multiscale inference for a multivariate density with applications to X-ray astronomy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 647-689, June.
- Jing Zhou & Anirban Bhattacharya & Amy H. Herring & David B. Dunson, 2015. "Bayesian Factorizations of Big Sparse Tensors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1562-1576, December.
- Yu-Ye Zou & Han-Ying Liang, 2020. "CLT for integrated square error of density estimators with censoring indicators missing at random," Statistical Papers, Springer, vol. 61(6), pages 2685-2714, December.
- Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
- Salomond, Jean-Bernard, 2014. "Propriétés fréquentistes des méthodes Bayésiennes semi-paramétriques et non paramétriques," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14331 edited by Rousseau, Judith & Rivoirard, Vincent.
- Norets, Andriy & Shimizu, Kenichi, 2024.
"Semiparametric Bayesian estimation of dynamic discrete choice models,"
Journal of Econometrics, Elsevier, vol. 238(2).
- Andriy Norets & Kenichi Shimizu, 2022. "Semiparametric Bayesian Estimation of Dynamic Discrete Choice Models," Papers 2202.04339, arXiv.org, revised Aug 2023.
- Andriy Norets & Kenichi Shimizu, 2022. "Semiparametric Bayesian Estimation of Dynamic Discrete Choice Models," Working Papers 2022_06, Business School - Economics, University of Glasgow.
- Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian Instrumental Variables Estimation for Nonignorable Missing Instruments," Discussion Paper Series DP2020-06, Research Institute for Economics & Business Administration, Kobe University.
- Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
More about this item
Keywords
B-spline; Density derivative estimation; Nonparametric Bayes; Posterior contraction rate; Tensor product;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:79:y:2017:i:2:d:10.1007_s13171-017-0105-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.