IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v70y2018i3d10.1007_s10463-017-0605-1.html
   My bibliography  Save this article

Multiscale inference for a multivariate density with applications to X-ray astronomy

Author

Listed:
  • Konstantin Eckle

    (Ruhr-Universität Bochum)

  • Nicolai Bissantz

    (Ruhr-Universität Bochum)

  • Holger Dette

    (Ruhr-Universität Bochum)

  • Katharina Proksch

    (Georg-August-Universität Göttingen)

  • Sabrina Einecke

    (Technische Universität Dortmund)

Abstract

In this paper, we propose methods for inference of the geometric features of a multivariate density. Our approach uses multiscale tests for the monotonicity of the density at arbitrary points in arbitrary directions. In particular, a significance test for a mode at a specific point is constructed. Moreover, we develop multiscale methods for identifying regions of monotonicity and a general procedure for detecting the modes of a multivariate density. It is shown that the latter method localizes the modes with an effectively optimal rate. The theoretical results are illustrated by means of a simulation study and a data example. The new method is applied to and motivated by the determination and verification of the position of high-energy sources from X-ray observations by the Swift satellite which is important for a multiwavelength analysis of objects such as Active Galactic Nuclei.

Suggested Citation

  • Konstantin Eckle & Nicolai Bissantz & Holger Dette & Katharina Proksch & Sabrina Einecke, 2018. "Multiscale inference for a multivariate density with applications to X-ray astronomy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 647-689, June.
  • Handle: RePEc:spr:aistmt:v:70:y:2018:i:3:d:10.1007_s10463-017-0605-1
    DOI: 10.1007/s10463-017-0605-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-017-0605-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-017-0605-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    2. K. S. Chan, 2004. "Testing for multimodality with dependent data," Biometrika, Biometrika Trust, vol. 91(1), pages 113-123, March.
    3. Gerber, Samuel & Potter, Kristin, 2012. "Data Analysis with the Morse-Smale Complex: The msr Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i02).
    4. Burman, Prabir & Polonik, Wolfgang, 2009. "Multivariate mode hunting: Data analytic tools with measures of significance," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1198-1218, July.
    5. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casa & Giovanna Menardi, 2022. "Nonparametric semi-supervised classification with application to signal detection in high energy physics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 531-550, September.
    2. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    3. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    4. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    5. Lasse Holmström & Kyösti Karttunen & Jussi Klemelä, 2017. "Estimation of level set trees using adaptive partitions," Computational Statistics, Springer, vol. 32(3), pages 1139-1163, September.
    6. van Dijk, Dick & Hans Franses, Philip & Peter Boswijk, H., 2007. "Absorption of shocks in nonlinear autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4206-4226, May.
    7. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    8. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Normal reference bandwidths for the general order, multivariate kernel density derivative estimator," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2198-2205.
    9. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    10. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    11. Manzan, Sebastiano & Zerom, Dawit, 2008. "A bootstrap-based non-parametric forecast density," International Journal of Forecasting, Elsevier, vol. 24(3), pages 535-550.
    12. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    13. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    14. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    15. Weining Shen & Subhashis Ghosal, 2017. "Posterior Contraction Rates of Density Derivative Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 336-354, August.
    16. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    17. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    18. Álvarez, Adolfo, 2013. "Recombining partitions via unimodality tests," DES - Working Papers. Statistics and Econometrics. WS ws130706, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Jan Beran & Klaus Telkmann, 2021. "On inference for modes under long memory," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 429-455, June.
    20. Horová, Ivana & Koláček, Jan & Vopatová, Kamila, 2013. "Full bandwidth matrix selectors for gradient kernel density estimate," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 364-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:70:y:2018:i:3:d:10.1007_s10463-017-0605-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.