IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v45y2013i10p1035-1047.html
   My bibliography  Save this article

Optimal admission control in series production systems with blocking

Author

Listed:
  • William Millhiser
  • Apostolos Burnetas

Abstract

This article studies the dynamic control of arrivals of multiple job classes in N-stage production systems with finite buffers and blocking after service. A model with multiple processing stages in series is formulated as a Markov decision process and a state definition from the queueing analysis literature is used to simplify the state-space description. This allows several fundamental admission control results from M/M/N and M/M/N/N queueing models as well as tandem models without blocking to be extended to tandem systems with blocking. Specifically, it is shown that the net benefit of admitting a job declines monotonically with the system congestion; thus the decision to admit any job class is based on threshold values of the number of jobs present in the system. Furthermore, conditions under which a job class is always or never admitted, regardless of the state, are derived. The interaction of blocking and admission control is explored by analyzing the effect of blocking on the optimal admission policy and profit. The article concludes with analyses of why extensions including loss and abandonment cannot sustain the monotonicity properties and two surrogate admission rules that may be used in practice but do not account for the blocking effect.

Suggested Citation

  • William Millhiser & Apostolos Burnetas, 2013. "Optimal admission control in series production systems with blocking," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1035-1047.
  • Handle: RePEc:taf:uiiexx:v:45:y:2013:i:10:p:1035-1047
    DOI: 10.1080/0740817X.2012.706732
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2012.706732
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2012.706732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan & Tonghoon Suk, 2020. "Revenue maximization in two‐station tandem queueing systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(2), pages 77-107, March.
    2. Xinchang Wang & Sigrún Andradóttir & Hayriye Ayhan, 2019. "Optimal pricing for tandem queues with finite buffers," Queueing Systems: Theory and Applications, Springer, vol. 92(3), pages 323-396, August.
    3. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović, 2018. "Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 15-47, June.
    4. Stratos Ioannidis & Alexandros S. Xanthopoulos & Ioannis Sarantis & Dimitrios E. Koulouriotis, 2021. "Joint production, inventory rationing, and order admission control of a stochastic manufacturing system with setups," Operational Research, Springer, vol. 21(2), pages 827-855, June.
    5. Guhlich, Hendrik & Fleischmann, Moritz & Mönch, Lars & Stolletz, Raik, 2018. "A clearing function based bid-price approach to integrated order acceptance and release decisions," European Journal of Operational Research, Elsevier, vol. 268(1), pages 243-254.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:45:y:2013:i:10:p:1035-1047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.