IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v109y2016icp202-207.html
   My bibliography  Save this article

Efficient simulation of non-Poisson non-stationary point processes to study queueing approximations

Author

Listed:
  • Ma, Ni
  • Whitt, Ward

Abstract

A nonstationary point process can be efficiently simulated by exploiting a representation as the composition of a rate-one process and the cumulative arrival rate function, provided that an efficient algorithm is available for generating the rate-one process, as is the case for stationary renewal processes, Markov modulated Poisson processes and many other processes. Overall efficiency can be achieved by constructing a table of the inverse cumulative arrival rate function when it is not explicitly available.

Suggested Citation

  • Ma, Ni & Whitt, Ward, 2016. "Efficient simulation of non-Poisson non-stationary point processes to study queueing approximations," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 202-207.
  • Handle: RePEc:eee:stapro:v:109:y:2016:i:c:p:202-207
    DOI: 10.1016/j.spl.2015.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215300079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athanassios N. Avramidis & Alexandre Deslauriers & Pierre L'Ecuyer, 2004. "Modeling Daily Arrivals to a Telephone Call Center," Management Science, INFORMS, vol. 50(7), pages 896-908, July.
    2. Lawrence M. Leemis, 1991. "Nonparametric Estimation of the Cumulative Intensity Function for a Nonhomogeneous Poisson Process," Management Science, INFORMS, vol. 37(7), pages 886-900, July.
    3. Ward Whitt, 1982. "Approximating a Point Process by a Renewal Process, I: Two Basic Methods," Operations Research, INFORMS, vol. 30(1), pages 125-147, February.
    4. Ira Gerhardt & Barry L. Nelson, 2009. "Transforming Renewal Processes for Simulation of Nonstationary Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 630-640, November.
    5. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    6. Geurt Jongbloed & Ger Koole, 2001. "Managing uncertainty in call centres using Poisson mixtures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 307-318, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongkyu Cho & Young Myoung Ko, 2020. "Stabilizing the virtual response time in single-server processor sharing queues with slowly time-varying arrival rates," Annals of Operations Research, Springer, vol. 293(1), pages 27-55, October.
    2. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović, 2018. "Time-varying tandem queues with blocking: modeling, analysis, and operational insights via fluid models with reflection," Queueing Systems: Theory and Applications, Springer, vol. 89(1), pages 15-47, June.
    3. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    4. Ward Whitt & Jingtong Zhao, 2017. "Many‐server loss models with non‐poisson time‐varying arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 177-202, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ward Whitt & Jingtong Zhao, 2017. "Many‐server loss models with non‐poisson time‐varying arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 177-202, April.
    2. Ran Liu & Michael E. Kuhl & Yunan Liu & James R. Wilson, 2019. "Modeling and Simulation of Nonstationary Non-Poisson Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 347-366, April.
    3. Yunan Liu & Ward Whitt & Yao Yu, 2016. "Approximations for heavily loaded G/GI/n + GI queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 187-217, April.
    4. Ira Gerhardt & Barry L. Nelson, 2009. "Transforming Renewal Processes for Simulation of Nonstationary Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 630-640, November.
    5. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    6. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    7. Heemskerk, M. & Mandjes, M. & Mathijsen, B., 2022. "Staffing for many-server systems facing non-standard arrival processes," European Journal of Operational Research, Elsevier, vol. 296(3), pages 900-913.
    8. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    9. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    10. Song‐Hee Kim & Ward Whitt, 2014. "Choosing arrival process models for service systems: Tests of a nonhomogeneous Poisson process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 66-90, February.
    11. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    12. Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
    13. Youri Raaijmakers & Hansjörg Albrecher & Onno Boxma, 2019. "The Single Server Queue with Mixing Dependencies," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1023-1044, December.
    14. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    15. Nasr, Walid W. & Elshar, Ibrahim J., 2018. "Continuous inventory control with stochastic and non-stationary Markovian demand," European Journal of Operational Research, Elsevier, vol. 270(1), pages 198-217.
    16. Landon, Joshua & Ruggeri, Fabrizio & Soyer, Refik & Murat Tarimcilar, M., 2010. "Modeling latent sources in call center arrival data," European Journal of Operational Research, Elsevier, vol. 204(3), pages 597-603, August.
    17. Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
    18. Refik Soyer & M. Murat Tarimcilar, 2008. "Modeling and Analysis of Call Center Arrival Data: A Bayesian Approach," Management Science, INFORMS, vol. 54(2), pages 266-278, February.
    19. Boris N. Oreshkin & Nazim Réegnard & Pierre L’Ecuyer, 2016. "Rate-Based Daily Arrival Process Models with Application to Call Centers," Operations Research, INFORMS, vol. 64(2), pages 510-527, April.
    20. Tevfik Aktekin & Refik Soyer, 2012. "Bayesian analysis of queues with impatient customers: Applications to call centers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 441-456, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:109:y:2016:i:c:p:202-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.