IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v103y2023i3d10.1007_s11134-022-09867-3.html
   My bibliography  Save this article

Estimating customer delay and tardiness sensitivity from periodic queue length observations

Author

Listed:
  • Liron Ravner

    (University of Haifa)

  • Jiesen Wang

    (The University of Melbourne
    Tel Aviv University)

Abstract

A single server commences its service at time zero every day. A random number of customers decide when to arrive to the system so as to minimize the waiting time and tardiness costs. The costs are proportional to the waiting time and the tardiness with rates $$\alpha $$ α and $$\beta $$ β , respectively. Each customer’s optimal arrival time depends on the others’ decisions; thus, the resulting strategy is a Nash equilibrium. This work considers the estimation of the ratio $$\displaystyle \theta \equiv \beta /(\alpha +\beta )$$ θ ≡ β / ( α + β ) from queue length data observed daily at discrete time points, given that customers use a Nash equilibrium arrival strategy. A method of moments estimator is constructed from the equilibrium conditions. Remarkably, the method does not require estimation of the Nash equilibrium arrival strategy itself, or even an accurate estimate of its support. The estimator is strongly consistent, and the estimation error is asymptotically normal. Moreover, the asymptotic variance of the estimation error as a function of the queue length covariance matrix (at sampling times) is derived. The estimator performance is demonstrated through simulations and is shown to be robust to the number of sampling instants each day.

Suggested Citation

  • Liron Ravner & Jiesen Wang, 2023. "Estimating customer delay and tardiness sensitivity from periodic queue length observations," Queueing Systems: Theory and Applications, Springer, vol. 103(3), pages 241-274, April.
  • Handle: RePEc:spr:queues:v:103:y:2023:i:3:d:10.1007_s11134-022-09867-3
    DOI: 10.1007/s11134-022-09867-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09867-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09867-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence W. Robinson & Rachel R. Chen, 2011. "Estimating the Implied Value of the Customer's Waiting Time," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 53-57, February.
    2. Azam Asanjarani & Yoni Nazarathy & Peter Taylor, 2021. "A survey of parameter and state estimation in queues," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 39-80, February.
    3. Glazer, Amihai & Hassin, Refael, 1983. "?/M/1: On the equilibrium distribution of customer arrivals," European Journal of Operational Research, Elsevier, vol. 13(2), pages 146-150, June.
    4. Ravner, Liron, 2014. "Equilibrium arrival times to a queue with order penalties," European Journal of Operational Research, Elsevier, vol. 239(2), pages 456-468.
    5. Moshe Haviv & Liron Ravner, 2021. "A survey of queueing systems with strategic timing of arrivals," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 163-198, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesper Breinbjerg & Trine Tornøe Platz & Lars Peter Østerdal, 2024. "Equilibrium arrivals to a last-come first-served preemptive-resume queue," Annals of Operations Research, Springer, vol. 336(3), pages 1551-1572, May.
    2. Breinbjerg, Jesper, 2017. "Equilibrium arrival times to queues with general service times and non-linear utility functions," European Journal of Operational Research, Elsevier, vol. 261(2), pages 595-605.
    3. Breinbjerg, Jesper & Østerdal, Lars Peter, 2017. "Equilibrium Arrival Times to Queues: The Case of Last-Come First-Serve Preemptive-Resume," Discussion Papers on Economics 3/2017, University of Southern Denmark, Department of Economics.
    4. Alon, Tzvi & Haviv, Moshe, 2022. "Discrete-time strategic job arrivals to a single machine with waiting and lateness penalties," European Journal of Operational Research, Elsevier, vol. 303(1), pages 480-486.
    5. Alexandra Borodina & Vladimir Mazalov, 2023. "On the Equilibrium in a Queuing System with Retrials and Strategic Arrivals," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    6. Moshe Haviv & Liron Ravner, 2014. "Strategic timing of arrivals to a finite queue multi-server loss system," Discussion Paper Series dp675, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    7. Moshe Haviv & Liron Ravner, 2021. "A survey of queueing systems with strategic timing of arrivals," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 163-198, October.
    8. Moshe Haviv, 2022. "Optimal timing of arrival to a queue," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 433-435, April.
    9. Sakuma, Yutaka & Masuyama, Hiroyuki & Fukuda, Emiko, 2020. "A discrete-time single-server Poisson queueing game: Equilibria simulated by an agent-based model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 253-264.
    10. Ravner, Liron & Haviv, Moshe & Vu, Hai L., 2016. "A strategic timing of arrivals to a linear slowdown processor sharing system," European Journal of Operational Research, Elsevier, vol. 255(2), pages 496-504.
    11. Tzvi Alon & Moshe Haviv, 2023. "Choosing a batch to be processed," Annals of Operations Research, Springer, vol. 326(1), pages 67-87, July.
    12. Liron Ravner & Yutaka Sakuma, 2021. "Strategic arrivals to a queue with service rate uncertainty," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 303-341, April.
    13. Breinbjerg, Jesper, 2016. "Strategic Arrival Times to Queueing Systems," Discussion Papers on Economics 6/2016, University of Southern Denmark, Department of Economics.
    14. Ghosh, Souvik & Hassin, Refael, 2021. "Inefficiency in stochastic queueing systems with strategic customers," European Journal of Operational Research, Elsevier, vol. 295(1), pages 1-11.
    15. Jesper Breinbjerg & Alexander Sebald & Lars Peter Østerdal, 2016. "Strategic behavior and social outcomes in a bottleneck queue: experimental evidence," Review of Economic Design, Springer;Society for Economic Design, vol. 20(3), pages 207-236, September.
    16. Platz, Trine Tornøe & Østerdal, Lars Peter, 2017. "The curse of the first-in–first-out queue discipline," Games and Economic Behavior, Elsevier, vol. 104(C), pages 165-176.
    17. René Caldentey & Gustavo Vulcano, 2007. "Online Auction and List Price Revenue Management," Management Science, INFORMS, vol. 53(5), pages 795-813, May.
    18. Alessandro Arlotto & Andrew E. Frazelle & Yehua Wei, 2019. "Strategic Open Routing in Service Networks," Management Science, INFORMS, vol. 65(2), pages 735-750, February.
    19. Gorbunova, A.V. & Lebedev, A.V., 2022. "Nontransitivity of tuples of random variables with polynomial density and its effects in Bayesian models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 181-192.
    20. Sandeep Juneja, 2022. "Learning the queue arrivals game equilibrium," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 533-535, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:103:y:2023:i:3:d:10.1007_s11134-022-09867-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.