IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v102y2022i1d10.1007_s11134-022-09859-3.html
   My bibliography  Save this article

Derivative of the expected supremum of fractional Brownian motion at $$H=1$$ H = 1

Author

Listed:
  • Krzysztof Bisewski

    (University of Lausanne)

  • Krzysztof Dȩbicki

    (University of Wrocław)

  • Tomasz Rolski

    (University of Wrocław)

Abstract

The H-derivative of the expected supremum of fractional Brownian motion $$\{B_H(t),t\in {\mathbb {R}}_+\}$$ { B H ( t ) , t ∈ R + } with drift $$a\in {\mathbb {R}}$$ a ∈ R over time interval [0, T] $$\begin{aligned} \frac{\partial }{\partial H} {\mathbb {E}}\Big (\sup _{t\in [0,T]} B_H(t) - at\Big ) \end{aligned}$$ ∂ ∂ H E ( sup t ∈ [ 0 , T ] B H ( t ) - a t ) at $$H=1$$ H = 1 is found. This formula depends on the quantity $${\mathscr {I}}$$ I , which has a probabilistic form. The numerical value of $${\mathscr {I}}$$ I is unknown; however, Monte Carlo experiments suggest $${\mathscr {I}}\approx 0.95$$ I ≈ 0.95 . As a by-product we establish a weak limit theorem in C[0, 1] for the fractional Brownian bridge, as $$H\uparrow 1$$ H ↑ 1 .

Suggested Citation

  • Krzysztof Bisewski & Krzysztof Dȩbicki & Tomasz Rolski, 2022. "Derivative of the expected supremum of fractional Brownian motion at $$H=1$$ H = 1," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 53-68, October.
  • Handle: RePEc:spr:queues:v:102:y:2022:i:1:d:10.1007_s11134-022-09859-3
    DOI: 10.1007/s11134-022-09859-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09859-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09859-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, J. & Piterbarg, V., 1999. "Extremes of a certain class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 257-271, October.
    2. Dieker, A.B., 2005. "Extremes of Gaussian processes over an infinite horizon," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 207-248, February.
    3. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    4. Borovkov, Konstantin & Mishura, Yuliya & Novikov, Alexander & Zhitlukhin, Mikhail, 2018. "New and refined bounds for expected maxima of fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 142-147.
    5. Azmoodeh, Ehsan & Sottinen, Tommi & Viitasaari, Lauri & Yazigi, Adil, 2014. "Necessary and sufficient conditions for Hölder continuity of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 230-235.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hüsler, Jürg & Zhang, Yueming, 2008. "On first and last ruin times of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1230-1235, August.
    2. Blanchet, Jose & Lam, Henry, 2013. "A heavy traffic approach to modeling large life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 237-251.
    3. Ji, Lanpeng & Peng, Xiaofan, 2023. "Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 418-452.
    4. Bai, Long & Luo, Li, 2017. "Parisian ruin of the Brownian motion risk model with constant force of interest," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 34-44.
    5. Pingjin Deng, 2018. "The Joint Distribution of Running Maximum of a Slepian Process," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1123-1135, December.
    6. Debicki, K. & Kosinski, K.M. & Mandjes, M. & Rolski, T., 2010. "Extremes of multidimensional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2289-2301, December.
    7. Krzysztof Dȩbicki, 2022. "Exact asymptotics of Gaussian-driven tandem queues," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 285-287, April.
    8. Bai, Long, 2020. "Extremes of standard multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 159(C).
    9. Krzysztof Dȩbicki & Peng Liu & Zbigniew Michna, 2020. "Sojourn Times of Gaussian Processes with Trend," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2119-2166, December.
    10. De[combining cedilla]bicki, Krzysztof & Kisowski, Pawel, 2008. "Asymptotics of supremum distribution of [alpha](t)-locally stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2022-2037, November.
    11. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.
    12. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    13. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    14. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    15. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    16. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    17. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    18. Tommi Sottinen & Lauri Viitasaari, 2018. "Parameter estimation for the Langevin equation with stationary-increment Gaussian noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 569-601, October.
    19. Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
    20. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:102:y:2022:i:1:d:10.1007_s11134-022-09859-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.