IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v33y2020i4d10.1007_s10959-019-00934-9.html
   My bibliography  Save this article

Sojourn Times of Gaussian Processes with Trend

Author

Listed:
  • Krzysztof Dȩbicki

    (University of Wrocław)

  • Peng Liu

    (University of Lausanne
    University of Waterloo)

  • Zbigniew Michna

    (Wrocław University of Economics)

Abstract

We derive exact tail asymptotics of sojourn time above the level $$u\ge 0$$ u ≥ 0 $$\begin{aligned} {\mathbb {P}} \left( v(u)\int _0^T {\mathbb {I}}(X(t)-ct>u)\text {d}t>x \right) , \quad x\ge 0, \end{aligned}$$ P v ( u ) ∫ 0 T I ( X ( t ) - c t > u ) d t > x , x ≥ 0 , as $$u\rightarrow \infty $$ u → ∞ , where X is a Gaussian process with continuous sample paths, c is some constant, v(u) is a positive function of u and $$T\in (0,\infty ]$$ T ∈ ( 0 , ∞ ] . Additionally, we analyze asymptotic distributional properties of $$\begin{aligned} \tau _u(x):=\inf \left\{ t\ge 0: {v(u)} \int _0^t {\mathbb {I}}(X(s)-cs>u)\text {d}s>x\right\} , \quad x \ge 0, \end{aligned}$$ τ u ( x ) : = inf t ≥ 0 : v ( u ) ∫ 0 t I ( X ( s ) - c s > u ) d s > x , x ≥ 0 , as $$u\rightarrow \infty $$ u → ∞ , where $$\inf \emptyset =\infty $$ inf ∅ = ∞ . The findings of this contribution are illustrated by a detailed analysis of a class of Gaussian processes with stationary increments and a family of self-similar Gaussian processes.

Suggested Citation

  • Krzysztof Dȩbicki & Peng Liu & Zbigniew Michna, 2020. "Sojourn Times of Gaussian Processes with Trend," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2119-2166, December.
  • Handle: RePEc:spr:jotpro:v:33:y:2020:i:4:d:10.1007_s10959-019-00934-9
    DOI: 10.1007/s10959-019-00934-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-019-00934-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-019-00934-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, J. & Piterbarg, V., 1999. "Extremes of a certain class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 257-271, October.
    2. Li, Yingqiu & Zhou, Xiaowen, 2014. "On pre-exit joint occupation times for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 48-55.
    3. Tomasz Bojdecki & Luis G. Gorostiza & Anna Talarczyk, 2004. "Sub-fractional Brownian motion and its relation to occupation times," RePAd Working Paper Series lrsp-TRS376, Département des sciences administratives, UQO.
    4. Roman N. Makarov, 2016. "Modeling liquidation risk with occupation times," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-11, December.
    5. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.
    6. Dieker, A.B., 2005. "Extremes of Gaussian processes over an infinite horizon," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 207-248, February.
    7. Samorodnitsky, Gennady, 1991. "Probability tails of Gaussian extrema," Stochastic Processes and their Applications, Elsevier, vol. 38(1), pages 55-84, June.
    8. Hüsler, J. & Piterbarg, V., 2004. "On the ruin probability for physical fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 315-332, October.
    9. Loeffen, Ronnie L. & Renaud, Jean-François & Zhou, Xiaowen, 2014. "Occupation times of intervals until first passage times for spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1408-1435.
    10. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tudor, Ciprian A. & Zurcher, Jérémy, 2024. "The spatial sojourn time for the solution to the wave equation with moving time: Central and non-central limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Lanpeng & Peng, Xiaofan, 2023. "Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 418-452.
    2. Bai, Long & Luo, Li, 2017. "Parisian ruin of the Brownian motion risk model with constant force of interest," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 34-44.
    3. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    4. De[combining cedilla]bicki, Krzysztof & Kisowski, Pawel, 2008. "Asymptotics of supremum distribution of [alpha](t)-locally stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2022-2037, November.
    5. Xuebing Kuang & Xiaowen Zhou, 2017. "n -Dimensional Laplace Transforms of Occupation Times for Spectrally Negative Lévy Processes," Risks, MDPI, vol. 5(1), pages 1-14, January.
    6. Hüsler, Jürg & Zhang, Yueming, 2008. "On first and last ruin times of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1230-1235, August.
    7. Li, Yingqiu & Zhou, Xiaowen & Zhu, Na, 2015. "Two-sided discounted potential measures for spectrally negative Lévy processes," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 67-76.
    8. Blanchet, Jose & Lam, Henry, 2013. "A heavy traffic approach to modeling large life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 237-251.
    9. Bisewski, Krzysztof & Dȩbicki, Krzysztof & Kriukov, Nikolai, 2023. "Simultaneous ruin probability for multivariate Gaussian risk model," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 386-408.
    10. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    11. Pingjin Deng, 2018. "The Joint Distribution of Running Maximum of a Slepian Process," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1123-1135, December.
    12. Debicki, K. & Kosinski, K.M. & Mandjes, M. & Rolski, T., 2010. "Extremes of multidimensional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2289-2301, December.
    13. Mohamed Amine Lkabous, 2019. "Poissonian occupation times of spectrally negative L\'evy processes with applications," Papers 1907.09990, arXiv.org.
    14. Landriault, David & Li, Bin & Lkabous, Mohamed Amine & Wang, Zijia, 2023. "Bridging the first and last passage times for Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 308-334.
    15. Mohamed Amine Lkabous, 2019. "A note on Parisian ruin under a hybrid observation scheme," Papers 1907.09993, arXiv.org.
    16. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2020. "On occupation times in the red of Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 17-26.
    17. Krzysztof Dȩbicki, 2022. "Exact asymptotics of Gaussian-driven tandem queues," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 285-287, April.
    18. Long Bai & Peng Liu, 2019. "Drawdown and Drawup for Fractional Brownian Motion with Trend," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1581-1612, September.
    19. Bai, Long, 2020. "Extremes of standard multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 159(C).
    20. Dieker, A.B., 2005. "Extremes of Gaussian processes over an infinite horizon," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 207-248, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:33:y:2020:i:4:d:10.1007_s10959-019-00934-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.