IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v101y2022i1d10.1007_s11134-021-09723-w.html
   My bibliography  Save this article

Fluid limits for shortest job first with aging

Author

Listed:
  • Yonatan Shadmi

    (Technion-Israel Institute of Technology)

Abstract

We investigate fluid scaling of single-server queues operating under a version of shortest job first (SJF) where the priority level undergoes aging. That is, a job’s priority level is initialized by its size and varies smoothly in time according to an ordinary differential equation. Linear and exponential aging rules are special cases of this model. This policy can be regarded as an interpolation between FIFO and SJF. We use the measure-valued Skorokhod map to characterize the fluid model and establish convergence under fluid scale. We treat in detail examples of linear and exponential aging rules and provide a performance criterion based on our main result.

Suggested Citation

  • Yonatan Shadmi, 2022. "Fluid limits for shortest job first with aging," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 93-112, June.
  • Handle: RePEc:spr:queues:v:101:y:2022:i:1:d:10.1007_s11134-021-09723-w
    DOI: 10.1007/s11134-021-09723-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-021-09723-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-021-09723-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atar, Rami & Biswas, Anup & Kaspi, Haya, 2018. "Law of large numbers for the many-server earliest-deadline-first queue," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2270-2296.
    2. Donald R. Smith, 1978. "Technical Note—A New Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 26(1), pages 197-199, February.
    3. L. Kleinrock, 1964. "A delay dependent queue discipline," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 11(3‐4), pages 329-341, September.
    4. Na Li & David A. Stanford & Peter Taylor & Ilze Ziedins, 2017. "Nonlinear Accumulating Priority Queues with Equivalent Linear Proxies," Operations Research, INFORMS, vol. 65(6), pages 1712-1721, December.
    5. Linus E. Schrage & Louis W. Miller, 1966. "The Queue M / G /1 with the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 14(4), pages 670-684, August.
    6. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    7. Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atar, Rami & Shadmi, Yonatan, 2023. "Fluid limits for earliest-deadline-first networks," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 279-307.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    2. Jing Dong & Rouba Ibrahim, 2021. "SRPT Scheduling Discipline in Many-Server Queues with Impatient Customers," Management Science, INFORMS, vol. 67(12), pages 7708-7718, December.
    3. Hyytiä, Esa & Penttinen, Aleksi & Aalto, Samuli, 2012. "Size- and state-aware dispatching problem with queue-specific job sizes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 357-370.
    4. Łukasz Kruk & Robert Gieroba, 2022. "Local edge minimality of SRPT networks with shared resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 459-492, December.
    5. Łukasz Kruk, 2022. "Heavy traffic analysis for single-server SRPT and LRPT queues via EDF diffusion limits," Annals of Operations Research, Springer, vol. 310(2), pages 411-429, March.
    6. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    7. Samuli Aalto & Ziv Scully, 2023. "Minimizing the mean slowdown in the M/G/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 187-210, August.
    8. Samuli Aalto & Urtzi Ayesta, 2009. "SRPT applied to bandwidth-sharing networks," Annals of Operations Research, Springer, vol. 170(1), pages 3-19, September.
    9. Predrag Jelenković & Xiaozhu Kang & Jian Tan, 2009. "Heavy-tailed limits for medium size jobs and comparison scheduling," Annals of Operations Research, Springer, vol. 170(1), pages 133-159, September.
    10. Rouba Ibrahim, 2022. "Personalized scheduling in service systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 445-447, April.
    11. Samuli Aalto & Ziv Scully, 2022. "On the Gittins index for multistage jobs," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 353-371, December.
    12. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    13. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    14. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
    15. Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.
    16. Konstantin Avrachenkov & Patrick Brown & Natalia Osipova, 2009. "Optimal choice of threshold in Two Level Processor Sharing," Annals of Operations Research, Springer, vol. 170(1), pages 21-39, September.
    17. Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
    18. Yuan, J.J. & Lin, Y.X. & Ng, C.T. & Cheng, T.C.E., 2007. "Approximability of single machine scheduling with fixed jobs to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 178(1), pages 46-56, April.
    19. Adam Wierman & Bert Zwart, 2012. "Is Tail-Optimal Scheduling Possible?," Operations Research, INFORMS, vol. 60(5), pages 1249-1257, October.
    20. Azizoglu, Meral & Cakmak, Ergin & Kondakci, Suna, 2001. "A flexible flowshop problem with total flow time minimization," European Journal of Operational Research, Elsevier, vol. 132(3), pages 528-538, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:101:y:2022:i:1:d:10.1007_s11134-021-09723-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.