Fluid limits for shortest job first with aging
Author
Abstract
Suggested Citation
DOI: 10.1007/s11134-021-09723-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Donald R. Smith, 1978. "Technical Note—A New Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 26(1), pages 197-199, February.
- L. Kleinrock, 1964. "A delay dependent queue discipline," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 11(3‐4), pages 329-341, September.
- Na Li & David A. Stanford & Peter Taylor & Ilze Ziedins, 2017. "Nonlinear Accumulating Priority Queues with Equivalent Linear Proxies," Operations Research, INFORMS, vol. 65(6), pages 1712-1721, December.
- Atar, Rami & Biswas, Anup & Kaspi, Haya, 2018. "Law of large numbers for the many-server earliest-deadline-first queue," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2270-2296.
- Linus E. Schrage & Louis W. Miller, 1966. "The Queue M / G /1 with the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 14(4), pages 670-684, August.
- Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
- Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Atar, Rami & Shadmi, Yonatan, 2023. "Fluid limits for earliest-deadline-first networks," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 279-307.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
- Hyytiä, Esa & Penttinen, Aleksi & Aalto, Samuli, 2012. "Size- and state-aware dispatching problem with queue-specific job sizes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 357-370.
- Łukasz Kruk, 2022. "Heavy traffic analysis for single-server SRPT and LRPT queues via EDF diffusion limits," Annals of Operations Research, Springer, vol. 310(2), pages 411-429, March.
- Jing Dong & Rouba Ibrahim, 2021. "SRPT Scheduling Discipline in Many-Server Queues with Impatient Customers," Management Science, INFORMS, vol. 67(12), pages 7708-7718, December.
- Łukasz Kruk & Robert Gieroba, 2022. "Local edge minimality of SRPT networks with shared resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 459-492, December.
- Thomas Kittsteiner & Benny Moldovanu, 2005.
"Priority Auctions and Queue Disciplines That Depend on Processing Time,"
Management Science, INFORMS, vol. 51(2), pages 236-248, February.
- Kittsteiner, Thomas & Moldovanu, Benny, 2004. "Priority Auctions and Queue Disciplines that Depend on Processing Time," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 5, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
- Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
- Rouba Ibrahim, 2022. "Personalized scheduling in service systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 445-447, April.
- Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
- Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.
- Samuli Aalto & Ziv Scully, 2023. "Minimizing the mean slowdown in the M/G/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 187-210, August.
- Samuli Aalto & Urtzi Ayesta, 2009. "SRPT applied to bandwidth-sharing networks," Annals of Operations Research, Springer, vol. 170(1), pages 3-19, September.
- Samuli Aalto & Ziv Scully, 2022. "On the Gittins index for multistage jobs," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 353-371, December.
- Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
- Predrag Jelenković & Xiaozhu Kang & Jian Tan, 2009. "Heavy-tailed limits for medium size jobs and comparison scheduling," Annals of Operations Research, Springer, vol. 170(1), pages 133-159, September.
- Samuli Aalto, 2006. "M/G/1/MLPS compared with M/G/1/PS within service time distribution class IMRL," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 309-325, October.
- Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
- Veeraruna Kavitha & Jayakrishnan Nair & Raman Kumar Sinha, 2019. "Pseudo conservation for partially fluid, partially lossy queueing systems," Annals of Operations Research, Springer, vol. 277(2), pages 255-292, June.
- Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
- Rami Atar & Anup Biswas & Haya Kaspi, 2015. "Fluid Limits of G / G /1+ G Queues Under the Nonpreemptive Earliest-Deadline-First Discipline," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 683-702, March.
More about this item
Keywords
Measure-valued Skorokhod map; Measure-valued processes; Fluid limits; Shortest job first; Aging;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:101:y:2022:i:1:d:10.1007_s11134-021-09723-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.