IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v109y2025i1d10.1007_s11134-024-09929-8.html
   My bibliography  Save this article

Heavy traffic scaling limits for shortest remaining processing time queues with light tailed processing time distributions

Author

Listed:
  • Chunxu Ji

    (California State University San Marcos)

  • Amber L. Puha

    (California State University San Marcos)

Abstract

We prove a heavy traffic scaling limit for a shortest remaining processing time queue. We are interested in the case where the processing time distribution has a tail that decays rapidly, i.e., has light tails. In particular, we revisit the work in Puha (2015), which shows that the diffusion scaled queue length process multiplied by a processing time distribution dependent factor that tends to infinity converges to a nontrivial reflecting Brownian motion, under the condition that this distribution dependent factor is slowly varying and obeys a certain rate of convergence condition. Here, we prove that the rate of convergence condition is not needed and the result holds more generally. We further show convergence of a sequence of nonstandardly scaled measure valued state descriptors to a point mass at one such that the total mass fluctuates randomly in accordance with the diffusion limit for the workload process. This is a sharp concentration result which shows that, under this nonstandard scaling, there are a very small number of tasks in the system and the remaining work for each such task is large and of the same order of magnitude as that of other tasks. This is due to the prioritization of the task with the least remaining work, and is in contrast to the case of heavy tailed processing times studied in Banerjee, Budhiraja, and Puha (2022). There it is shown that, while there is some concentration, the remaining times of the very small number of tasks in the system spread out over the nonnegative real line according to a random profile under this nonstandard scaling. Thus, this work completes the description of the two fundamentally different behaviors of SPRT by characterizing it in the case of light tailed processing time distributions.

Suggested Citation

  • Chunxu Ji & Amber L. Puha, 2025. "Heavy traffic scaling limits for shortest remaining processing time queues with light tailed processing time distributions," Queueing Systems: Theory and Applications, Springer, vol. 109(1), pages 1-58, March.
  • Handle: RePEc:spr:queues:v:109:y:2025:i:1:d:10.1007_s11134-024-09929-8
    DOI: 10.1007/s11134-024-09929-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-024-09929-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-024-09929-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald R. Smith, 1978. "Technical Note—A New Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 26(1), pages 197-199, February.
    2. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    3. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    4. Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonatan Shadmi, 2022. "Fluid limits for shortest job first with aging," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 93-112, June.
    2. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    3. Łukasz Kruk, 2022. "Heavy traffic analysis for single-server SRPT and LRPT queues via EDF diffusion limits," Annals of Operations Research, Springer, vol. 310(2), pages 411-429, March.
    4. Samuli Aalto & Ziv Scully, 2023. "Minimizing the mean slowdown in the M/G/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 104(3), pages 187-210, August.
    5. Samuli Aalto & Urtzi Ayesta, 2009. "SRPT applied to bandwidth-sharing networks," Annals of Operations Research, Springer, vol. 170(1), pages 3-19, September.
    6. Samuli Aalto & Ziv Scully, 2022. "On the Gittins index for multistage jobs," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 353-371, December.
    7. Rouba Ibrahim, 2022. "Personalized scheduling in service systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 445-447, April.
    8. Jing Dong & Rouba Ibrahim, 2021. "SRPT Scheduling Discipline in Many-Server Queues with Impatient Customers," Management Science, INFORMS, vol. 67(12), pages 7708-7718, December.
    9. Łukasz Kruk, 2020. "Continuity and monotonicity of solutions to a greedy maximization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 33-76, August.
    10. Hyytiä, Esa & Penttinen, Aleksi & Aalto, Samuli, 2012. "Size- and state-aware dispatching problem with queue-specific job sizes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 357-370.
    11. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
    12. Łukasz Kruk & Robert Gieroba, 2022. "Local edge minimality of SRPT networks with shared resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 459-492, December.
    13. Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.
    14. Konstantin Avrachenkov & Patrick Brown & Natalia Osipova, 2009. "Optimal choice of threshold in Two Level Processor Sharing," Annals of Operations Research, Springer, vol. 170(1), pages 21-39, September.
    15. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    16. Azizoglu, Meral & Cakmak, Ergin & Kondakci, Suna, 2001. "A flexible flowshop problem with total flow time minimization," European Journal of Operational Research, Elsevier, vol. 132(3), pages 528-538, August.
    17. Łukasz Kruk, 2017. "Edge minimality of EDF resource sharing networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 331-366, October.
    18. Samuli Aalto, 2006. "M/G/1/MLPS compared with M/G/1/PS within service time distribution class IMRL," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 309-325, October.
    19. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    20. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:109:y:2025:i:1:d:10.1007_s11134-024-09929-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.