IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v96y2022i3d10.1007_s00186-022-00801-0.html
   My bibliography  Save this article

Local edge minimality of SRPT networks with shared resources

Author

Listed:
  • Łukasz Kruk

    (Maria Curie-Skłodowska University)

  • Robert Gieroba

    (Maria Curie-Skłodowska University)

Abstract

We consider a general network with arbitrary topology and node capacities, in which users require simultaneous service from a number of shared resources. We study pathwise minimality of the shortest remaining processing time protocol with respect to suitable criteria based on the system’s cumulative transmission times of flows with residual service requirements not greater than any threshold value on the network routes. No distributional assumptions are made on the underlying stochastic primitives.

Suggested Citation

  • Łukasz Kruk & Robert Gieroba, 2022. "Local edge minimality of SRPT networks with shared resources," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 459-492, December.
  • Handle: RePEc:spr:mathme:v:96:y:2022:i:3:d:10.1007_s00186-022-00801-0
    DOI: 10.1007/s00186-022-00801-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-022-00801-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-022-00801-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Dong & Rouba Ibrahim, 2021. "SRPT Scheduling Discipline in Many-Server Queues with Impatient Customers," Management Science, INFORMS, vol. 67(12), pages 7708-7718, December.
    2. Łukasz Kruk, 2017. "Edge minimality of EDF resource sharing networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 331-366, October.
    3. Łukasz Kruk, 2016. "Minimality of EDF networks with resource sharing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 259-283, October.
    4. Linus E. Schrage & Louis W. Miller, 1966. "The Queue M / G /1 with the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 14(4), pages 670-684, August.
    5. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    6. Linus Schrage, 1968. "Letter to the Editor—A Proof of the Optimality of the Shortest Remaining Processing Time Discipline," Operations Research, INFORMS, vol. 16(3), pages 687-690, June.
    7. Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.
    8. Samuli Aalto & Urtzi Ayesta, 2009. "SRPT applied to bandwidth-sharing networks," Annals of Operations Research, Springer, vol. 170(1), pages 3-19, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Kruk & Tymoteusz Chojecki, 2022. "Instability of SRPT, SERPT and SJF multiclass queueing networks," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 57-92, June.
    2. Łukasz Kruk, 2020. "Continuity and monotonicity of solutions to a greedy maximization problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 33-76, August.
    3. Rouba Ibrahim, 2022. "Personalized scheduling in service systems," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 445-447, April.
    4. Hyytiä, Esa & Penttinen, Aleksi & Aalto, Samuli, 2012. "Size- and state-aware dispatching problem with queue-specific job sizes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 357-370.
    5. Łukasz Kruk, 2022. "Heavy traffic analysis for single-server SRPT and LRPT queues via EDF diffusion limits," Annals of Operations Research, Springer, vol. 310(2), pages 411-429, March.
    6. Yonatan Shadmi, 2022. "Fluid limits for shortest job first with aging," Queueing Systems: Theory and Applications, Springer, vol. 101(1), pages 93-112, June.
    7. Łukasz Kruk & Ewa Sokołowska, 2016. "Fluid Limits for Multiple-Input Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1055-1092, August.
    8. Jing Dong & Rouba Ibrahim, 2021. "SRPT Scheduling Discipline in Many-Server Queues with Impatient Customers," Management Science, INFORMS, vol. 67(12), pages 7708-7718, December.
    9. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    10. Mor Harchol-Balter, 2021. "Open problems in queueing theory inspired by datacenter computing," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 3-37, February.
    11. Chen, Rubing & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2021. "Single-machine hierarchical scheduling with release dates and preemption to minimize the total completion time and a regular criterion," European Journal of Operational Research, Elsevier, vol. 293(1), pages 79-92.
    12. Łukasz Kruk, 2017. "Edge minimality of EDF resource sharing networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 331-366, October.
    13. Douglas G. Down & H. Christian Gromoll & Amber L. Puha, 2009. "Fluid Limits for Shortest Remaining Processing Time Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 880-911, November.
    14. Predrag Jelenković & Xiaozhu Kang & Jian Tan, 2009. "Heavy-tailed limits for medium size jobs and comparison scheduling," Annals of Operations Research, Springer, vol. 170(1), pages 133-159, September.
    15. Chunxu Ji & Amber L. Puha, 2025. "Heavy traffic scaling limits for shortest remaining processing time queues with light tailed processing time distributions," Queueing Systems: Theory and Applications, Springer, vol. 109(1), pages 1-58, March.
    16. Łukasz Kruk, 2018. "Stability of linear EDF networks with resource sharing," Queueing Systems: Theory and Applications, Springer, vol. 88(1), pages 167-203, February.
    17. Samuli Aalto, 2006. "M/G/1/MLPS compared with M/G/1/PS within service time distribution class IMRL," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(2), pages 309-325, October.
    18. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
    19. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
    20. Rami Atar & Anup Biswas & Haya Kaspi, 2015. "Fluid Limits of G / G /1+ G Queues Under the Nonpreemptive Earliest-Deadline-First Discipline," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 683-702, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:96:y:2022:i:3:d:10.1007_s00186-022-00801-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.