IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v54y2020i1d10.1007_s11135-019-00935-0.html
   My bibliography  Save this article

Economic indicators forecasting in presence of seasonal patterns: time series revision and prediction accuracy

Author

Listed:
  • Massimiliano Giacalone

    (University of Naples “Federico II”)

  • Raffaele Mattera

    (University of Naples “Federico II”)

  • Eugenia Nissi

    (University of Chieti-Pescara “Gabriele D’Annunzio”)

Abstract

The most common purpose of seasonal adjustment is to provide an estimate of the current trend so that judgmental short-term forecasts can be made. Bell (Proceedings of the American Statistical Association, 1995) formally considered how model-based seasonal adjustment could be done in order to facilitate the forecasting, showing that, from a theoretical perspective, this objective could be best served by not revising the data for seasonality. However, this study was lacking an empirical investigation to determine if this approach would realize any advantages when applied in practice. Aim of this paper is to assess whether is convenient, from forecasting perspective, to adjust data for seasonality or directly use a model which accounts for seasonality. In particular, we serve this scope by both a simulation study and an application with real data related to Industrial Production Index. We show that pre-adjusting the time series for seasonality allows for forecasting improvements in terms of accuracy. In the end we evaluated also the best seasonally adjustment method for forecasting purposes. Empirical evidence shows that the forecasts among seasonal adjustment methods are statistically different and that, while for the Italian TRAMO-SEATS outperform X13-ARIMA-SEATS, the opposite happen for the U.S. Industrial Production. Results from the simulation suggest that the forecasts among the considered seasonal adjustment methods are not statistically different for very short and long time period. However, seasonal adjustment methods lead to statistically different forecasts for medium and for very long time period.

Suggested Citation

  • Massimiliano Giacalone & Raffaele Mattera & Eugenia Nissi, 2020. "Economic indicators forecasting in presence of seasonal patterns: time series revision and prediction accuracy," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 67-84, February.
  • Handle: RePEc:spr:qualqt:v:54:y:2020:i:1:d:10.1007_s11135-019-00935-0
    DOI: 10.1007/s11135-019-00935-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-019-00935-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-019-00935-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. Charles I. Plosser, 1978. "A Time Series Analysis of Seasonality in Econometric Models," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 365-408, National Bureau of Economic Research, Inc.
    3. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    6. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, October.
    7. F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
    8. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    9. Olivier Darné & Claude Diebolt, 2002. "A Note on Seasonal Unit Root Tests," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(3), pages 305-310, August.
    10. Carlos A. Medel, 2013. "How informative are in-sample information criteria to forecasting? The case of Chilean GDP," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 50(1), pages 133-161, May.
    11. Terence Mills, 2010. "Forecasting compositional time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(4), pages 673-690, June.
    12. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
    13. Clive W. J. Granger, 1978. "Seasonality: Causation, Interpretation, and Implications," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 33-56, National Bureau of Economic Research, Inc.
    14. Shujie Shen & Gang Li & Haiyan Song, 2009. "Effect of Seasonality Treatment on the Forecasting Performance of Tourism Demand Models," Tourism Economics, , vol. 15(4), pages 693-708, December.
    15. Massimiliano Giacalone & Demetrio Panarello & Raffaele Mattera, 2018. "Multicollinearity in regression: an efficiency comparison between Lp-norm and least squares estimators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1831-1859, July.
    16. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Giacalone, 2022. "Optimal forecasting accuracy using Lp-norm combination," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 187-230, August.
    2. Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
    3. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    4. Carlos A. Medel, 2018. "A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 47-87, April.
    5. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    6. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    7. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    8. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    9. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    10. Michael D. Bauer & Glenn D. Rudebusch, 2020. "Interest Rates under Falling Stars," American Economic Review, American Economic Association, vol. 110(5), pages 1316-1354, May.
    11. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    12. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    13. Medel, Carlos, 2015. "Inflation Dynamics and the Hybrid Neo Keynesian Phillips Curve: The Case of Chile," MPRA Paper 62609, University Library of Munich, Germany.
    14. Djuranovik, Leslie, 2014. "The Indonesian macroeconomy and the yield curve: A dynamic latent factor approach," Journal of Asian Economics, Elsevier, vol. 34(C), pages 1-15.
    15. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    16. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    17. Golinelli, Roberto & Parigi, Giuseppe, 2008. "Real-time squared: A real-time data set for real-time GDP forecasting," International Journal of Forecasting, Elsevier, vol. 24(3), pages 368-385.
    18. Fok, D. & Franses, Ph.H.B.F. & Paap, R., 2005. "Performance of Seasonal Adjustment Procedures: Simulation and Empirical Results," Econometric Institute Research Papers EI 2005-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. McElroy, Tucker & Wildi, Marc, 2013. "Multi-step-ahead estimation of time series models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 378-394.
    20. Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:54:y:2020:i:1:d:10.1007_s11135-019-00935-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.