IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v29y2013i3p378-394.html
   My bibliography  Save this article

Multi-step-ahead estimation of time series models

Author

Listed:
  • McElroy, Tucker
  • Wildi, Marc

Abstract

We study the fitting of time series models via the minimization of a multi-step-ahead forecast error criterion that is based on the asymptotic average of squared forecast errors. Our objective function uses frequency domain concepts, but is formulated in the time domain, and allows the estimation of all linear processes (e.g., ARIMA and component ARIMA). By using an asymptotic form of the forecast mean squared error, we obtain a well-defined nonlinear function of the parameters that is proven to be minimized at the true parameter vector when the model is correctly specified. We derive the statistical properties of the parameter estimates, and study the asymptotic impact of model misspecification on multi-step-ahead forecasting. The method is illustrated through a forecasting exercise, applied to several time series.

Suggested Citation

  • McElroy, Tucker & Wildi, Marc, 2013. "Multi-step-ahead estimation of time series models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 378-394.
  • Handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:378-394
    DOI: 10.1016/j.ijforecast.2012.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207012001148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2012.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Proietti, Tommaso, 2011. "Direct and iterated multistep AR methods for difference stationary processes," International Journal of Forecasting, Elsevier, vol. 27(2), pages 266-280.
    2. Gersch, Will & Kitagawa, Genshiro, 1983. "The Prediction of Time Series with Trends and Seasonalities," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 253-264, July.
    3. Marc Wildi & Bernd Schips, 2004. "Signal Extraction: How (In)efficient Are Model-Based Approaches? An Empirical Study Based on TRAMO/SEATS and Census X-12-ARIMA," KOF Working papers 04-96, KOF Swiss Economic Institute, ETH Zurich.
    4. J. Haywood & G. Tunnicliffe Wilson, 1997. "Fitting Time Series Models by Minimizing Multistep‐ahead Errors: a Frequency Domain Approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 237-254.
    5. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    6. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    7. Tucker McElroy, 2008. "Exact formulas for the Hodrick-Prescott filter," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 209-217, March.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    10. Findley, David F. & Potscher, Benedikt M. & Wei, Ching-Zong, 2004. "Modeling of time series arrays by multistep prediction or likelihood methods," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 151-187.
    11. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    12. McElroy, Tucker, 2008. "Matrix Formulas For Nonstationary Arima Signal Extraction," Econometric Theory, Cambridge University Press, vol. 24(4), pages 988-1009, August.
    13. McElroy, Tucker & Holan, Scott, 2009. "A local spectral approach for assessing time series model misspecification," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 604-621, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wildi, Marc, 2010. "Real-Time Signal Extraction: a Shift of Perspective/Extracción de señal en tiempo real: un cambio de perspectiva," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 497-518, Diciembre.
    2. Shahedul A. Khan, 2018. "Exponentiated Weibull regression for time-to-event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 328-354, April.
    3. Di Piazza, A. & Di Piazza, M.C. & La Tona, G. & Luna, M., 2021. "An artificial neural network-based forecasting model of energy-related time series for electrical grid management," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 184(C), pages 294-305.
    4. Wildi Marc & McElroy Tucker, 2016. "Optimal Real-Time Filters for Linear Prediction Problems," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 155-192, July.
    5. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    2. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    3. McElroy, Tucker S. & Jach, Agnieszka, 2023. "Identification of the differencing operator of a non-stationary time series via testing for zeroes in the spectral density," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    4. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    5. Guillaume Chevillon, 2006. "Multi-step Forecasting in Unstable Economies: Robustness Issues in the Presence of Location Shifts," Economics Series Working Papers 257, University of Oxford, Department of Economics.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. Marcus Cobb, 2009. "Forecasting Chilean Inflation From Disaggregate Components," Working Papers Central Bank of Chile 545, Central Bank of Chile.
    8. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    9. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    10. Braione, Manuela, 2016. "A time-varying long run HEAVY model," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
    11. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    12. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    13. O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007. "Forecasting inflation using economic indicators: the case of France," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
    14. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    15. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    16. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72.
    17. Guy Mélard, 2016. "On some remarks about SEATS signal extraction," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 53-98, March.
    18. Matheson, Troy D., 2008. "Phillips curve forecasting in a small open economy," Economics Letters, Elsevier, vol. 98(2), pages 161-166, February.
    19. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    20. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:29:y:2013:i:3:p:378-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.