IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v77y2012i2p223-243.html
   My bibliography  Save this article

Identification of a Semiparametric Item Response Model

Author

Listed:
  • Michael Peress

Abstract

No abstract is available for this item.

Suggested Citation

  • Michael Peress, 2012. "Identification of a Semiparametric Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 223-243, April.
  • Handle: RePEc:spr:psycho:v:77:y:2012:i:2:p:223-243
    DOI: 10.1007/s11336-012-9253-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-012-9253-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-012-9253-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    2. Jeffrey Douglas, 2001. "Asymptotic identifiability of nonparametric item response models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 531-540, December.
    3. Jeff Douglas, 1997. "Joint consistency of nonparametric item characteristic curve and ability estimation," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 7-28, March.
    4. J. Ramsay, 1991. "Kernel smoothing approaches to nonparametric item characteristic curve estimation," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 611-630, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinqiu He, 2024. "Extended Asymptotic Identifiability of Nonparametric Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 958-973, September.
    2. Christopher Hare & Keith T. Poole, 2015. "Measuring ideology in Congress," Chapters, in: Jac C. Heckelman & Nicholas R. Miller (ed.), Handbook of Social Choice and Voting, chapter 18, pages 327-346, Edward Elgar Publishing.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Liu & Weimeng Wang, 2022. "Semiparametric Factor Analysis for Item-Level Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 666-692, June.
    2. Yinqiu He, 2024. "Extended Asymptotic Identifiability of Nonparametric Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 958-973, September.
    3. Mazza, Angelo & Punzo, Antonio & McGuire, Brian, 2014. "KernSmoothIRT: An R Package for Kernel Smoothing in Item Response Theory," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i06).
    4. Benjamin Williams, 2019. "Identification of a nonseparable model under endogeneity using binary proxies for unobserved heterogeneity," Quantitative Economics, Econometric Society, vol. 10(2), pages 527-563, May.
    5. Javier Revuelta, 2004. "Analysis of distractor difficulty in multiple-choice items," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 217-234, June.
    6. Francesca Fortuna & Fabrizio Maturo, 2019. "K-means clustering of item characteristic curves and item information curves via functional principal component analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2291-2304, September.
    7. Fabrizio Maturo & Francesca Fortuna & Tonio Di Battista, 2019. "Testing Equality of Functions Across Multiple Experimental Conditions for Different Ability Levels in the IRT Context: The Case of the IPRASE TLT 2016 Survey," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 19-39, November.
    8. Xueli Xu & Jeff Douglas, 2006. "Computerized adaptive testing under nonparametric IRT models," Psychometrika, Springer;The Psychometric Society, vol. 71(1), pages 121-137, March.
    9. Chanjin Zheng & Shaoyang Guo & Justin L Kern, 2021. "Fast Bayesian Estimation for the Four-Parameter Logistic Model (4PLM)," SAGE Open, , vol. 11(4), pages 21582440211, October.
    10. Johnson, Matthew S., 2007. "Modeling dichotomous item responses with free-knot splines," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4178-4192, May.
    11. Longjuan Liang & Michael W. Browne, 2015. "A Quasi-Parametric Method for Fitting Flexible Item Response Functions," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 5-34, February.
    12. Hongwen Guo & Sandip Sinharay, 2011. "Nonparametric Item Response Curve Estimation With Correction for Measurement Error," Journal of Educational and Behavioral Statistics, , vol. 36(6), pages 755-778, December.
    13. Jeffrey Douglas, 2001. "Asymptotic identifiability of nonparametric item response models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 531-540, December.
    14. Ying Cheng & Ke-Hai Yuan, 2010. "The Impact of Fallible Item Parameter Estimates on Latent Trait Recovery," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 280-291, June.
    15. Alexander Robitzsch, 2024. "Bias-Reduced Haebara and Stocking–Lord Linking," J, MDPI, vol. 7(3), pages 1-12, September.
    16. Henry Santa-Cruz-Espinoza & Gina Chávez-Ventura & Julio Domínguez-Vergara & César Merino-Soto, 2023. "Internal Structure of the Work–Family Conflict Questionnaire (WFCQ) in Teacher Teleworking," IJERPH, MDPI, vol. 20(2), pages 1-16, January.
    17. Joel A. Martínez-Regalado & Cinthia Leonora Murillo-Avalos & Purificación Vicente-Galindo & Mónica Jiménez-Hernández & José Luis Vicente-Villardón, 2021. "Using HJ-Biplot and External Logistic Biplot as Machine Learning Methods for Corporate Social Responsibility Practices for Sustainable Development," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    18. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    19. Michela Battauz & Ruggero Bellio, 2011. "Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates," Psychometrika, Springer;The Psychometric Society, vol. 76(1), pages 40-56, January.
    20. Melissa Gladstone & Gillian Lancaster & Gareth McCray & Vanessa Cavallera & Claudia R. L. Alves & Limbika Maliwichi & Muneera A. Rasheed & Tarun Dua & Magdalena Janus & Patricia Kariger, 2021. "Validation of the Infant and Young Child Development (IYCD) Indicators in Three Countries: Brazil, Malawi and Pakistan," IJERPH, MDPI, vol. 18(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:77:y:2012:i:2:p:223-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.