IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v9y2017i1d10.1007_s12469-016-0132-0.html
   My bibliography  Save this article

Passenger routing for periodic timetable optimization

Author

Listed:
  • Ralf Borndörfer

    (Zuse-Institute Berlin)

  • Heide Hoppmann

    (Zuse-Institute Berlin)

  • Marika Karbstein

    (Zuse-Institute Berlin)

Abstract

The task of periodic timetabling is to determine trip arrival and departure times in a public transport system such that travel and transfer times are minimized. This paper investigates periodic timetabling models with integrated passenger routing. We show that different routing models can have a huge influence on the quality of the entire system: Whatever metric is applied, the performance ratios of timetables w.r.t. different routing models can be arbitrarily large. Computations on a real-world instance for the city of Wuppertal substantiate the theoretical findings. These results indicate the existence of untapped optimization potentials that can be used to improve the efficiency of public transport systems by integrating passenger routing.

Suggested Citation

  • Ralf Borndörfer & Heide Hoppmann & Marika Karbstein, 2017. "Passenger routing for periodic timetable optimization," Public Transport, Springer, vol. 9(1), pages 115-135, July.
  • Handle: RePEc:spr:pubtra:v:9:y:2017:i:1:d:10.1007_s12469-016-0132-0
    DOI: 10.1007/s12469-016-0132-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-016-0132-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-016-0132-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    2. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julius Pätzold, 2021. "Finding robust periodic timetables by integrating delay management," Public Transport, Springer, vol. 13(2), pages 349-374, June.
    2. Philine Schiewe & Marc Goerigk & Niels Lindner, 2023. "Introducing TimPassLib – A Library for Integrated Periodic Timetabling and Passenger Routing," SN Operations Research Forum, Springer, vol. 4(3), pages 1-14, September.
    3. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.
    4. Polinder, G.-J. & Schmidt, M.E. & Huisman, D., 2020. "Timetabling for strategic passenger railway planning," ERIM Report Series Research in Management ERS-2020-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    6. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    7. Martin-Iradi, Bernardo & Ropke, Stefan, 2022. "A column-generation-based matheuristic for periodic and symmetric train timetabling with integrated passenger routing," European Journal of Operational Research, Elsevier, vol. 297(2), pages 511-531.
    8. Hartleb, J. & Schmidt, M.E., 2019. "Railway timetabling with integrated passenger distribution," ERIM Report Series Research in Management ERS-2019-012-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Xie, J. & Wong, S.C. & Zhan, S. & Lo, S.M. & Chen, Anthony, 2020. "Train schedule optimization based on schedule-based stochastic passenger assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    10. Robenek, Tomáš & Azadeh, Shadi Sharif & Maknoon, Yousef & de Lapparent, Matthieu & Bierlaire, Michel, 2018. "Train timetable design under elastic passenger demand," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 19-38.
    11. Yoonjee Baek & Heesun Joo, 2022. "A Study on the Spatial Structure of the Bu-Ul-Gyeong Megacity Using the City Network Paradigm," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    12. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    13. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    14. Polinder, Gert-Jaap & Schmidt, Marie & Huisman, Dennis, 2021. "Timetabling for strategic passenger railway planning," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 111-135.
    15. João Paiva Fonseca & Tobias Zündorf & Evelien van der Hurk & Yongqiu Zhu & Allan Larsen, 2022. "A matheuristic for passenger service optimization through timetabling with free passenger route choice," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1087-1129, December.
    16. Hartleb, J. & Schmidt, M.E. & Friedrich, M. & Huisman, D., 2019. "A good or a bad timetable: Do different evaluation functions agree?," ERIM Report Series Research in Management ERS-2019-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Song & Zhan, Shuguang, 2021. "Two-stage robust railway line-planning approach with passenger demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Evert Vermeir & Javier Durán-Micco & Pieter Vansteenwegen, 2022. "The grid based approach, a fast local evaluation technique for line planning," 4OR, Springer, vol. 20(4), pages 603-635, December.
    3. Jiguang Wang & Yilun Zhang & Xinjie Xing & Yuanzhu Zhan & Wai Kin Victor Chan & Sunil Tiwari, 2024. "A data-driven system for cooperative-bus route planning based on generative adversarial network and metric learning," Annals of Operations Research, Springer, vol. 339(1), pages 427-453, August.
    4. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    5. Limsawasd, Charinee & Athigakunagorn, Nathee & Khathawatcharakun, Phattadon & Boonmee, Atiwat, 2022. "Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak," Transport Policy, Elsevier, vol. 126(C), pages 225-238.
    6. Suman, Hemant K. & Bolia, Nomesh B., 2019. "Improvement in direct bus services through route planning," Transport Policy, Elsevier, vol. 81(C), pages 263-274.
    7. Evelien van der Hurk & Haris N. Koutsopoulos & Nigel Wilson & Leo G. Kroon & Gábor Maróti, 2016. "Shuttle Planning for Link Closures in Urban Public Transport Networks," Transportation Science, INFORMS, vol. 50(3), pages 947-965, August.
    8. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    9. Parbo, Jens & Nielsen, Otto A. & Prato, Carlo G., 2018. "Reducing passengers’ travel time by optimising stopping patterns in a large-scale network: A case-study in the Copenhagen Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 197-212.
    10. Philine Gattermann & Jonas Harbering & Anita Schöbel, 2017. "Line pool generation," Public Transport, Springer, vol. 9(1), pages 7-32, July.
    11. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    12. Tatsuki Yamauchi & Mizuyo Takamatsu & Shinji Imahori, 2023. "Optimizing train stopping patterns for congestion management," Public Transport, Springer, vol. 15(1), pages 1-29, March.
    13. Jakub OZIOMEK & Andrzej ROGOWSKI, 2018. "Improvement Of Regularity Of Urban Public Transport Lines By Means Of Intervals Synchronization," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(4), pages 91-102, December.
    14. Hamid, Faiz & Agarwal, Yogesh K., 2024. "Train stop scheduling problem: An exact approach using valid inequalities and polar duality," European Journal of Operational Research, Elsevier, vol. 313(1), pages 207-224.
    15. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.
    16. Yan, Fei & Bešinović, Nikola & Goverde, Rob M.P., 2019. "Multi-objective periodic railway timetabling on dense heterogeneous railway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 52-75.
    17. Simon Bull & Jesper Larsen & Richard M. Lusby & Natalia J. Rezanova, 2019. "Optimising the travel time of a line plan," 4OR, Springer, vol. 17(3), pages 225-259, September.
    18. Masing, Berenike & Lindner, Niels & Borndörfer, Ralf, 2022. "The price of symmetric line plans in the Parametric City," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 419-443.
    19. Ralf Borndörfer & Berkan Erol & Thomas Graffagnino & Thomas Schlechte & Elmar Swarat, 2014. "Optimizing the Simplon railway corridor," Annals of Operations Research, Springer, vol. 218(1), pages 93-106, July.
    20. Guo, Xin & Sun, Huijun & Wu, Jianjun & Jin, Jiangang & Zhou, Jin & Gao, Ziyou, 2017. "Multiperiod-based timetable optimization for metro transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 46-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:9:y:2017:i:1:d:10.1007_s12469-016-0132-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.