IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v13y2021i2d10.1007_s12469-020-00260-y.html
   My bibliography  Save this article

Finding robust periodic timetables by integrating delay management

Author

Listed:
  • Julius Pätzold

    (Mobi Systems Inc.)

Abstract

This paper defines and solves a mathematical model for finding robust periodic timetables by proposing an extension of the Periodic Event Scheduling Problem (PESP). In order to model delayed and non-nominal travel times already in the timetabling step, the aim of this paper is to integrate delay management into the periodic timetabling problem and investigating the resulting problem (RPT). After revisiting both (PESP) and delay management individually, we introduce a periodic delay management model – an auxiliary model capable of evaluating periodic timetables with respect to delay resistance. Having introduced periodic delay management, we define the robust periodic timetabling problem (RPT). Due to the high complexity of the robust periodic timetabling problem we propose two different simplifications of the problem and introduce solution algorithms for both of them. These solution algorithms are tested against timetables found by standard procedures for periodic timetabling with respect to their delay-resistance. The computational results show that our algorithms yield timetables which can cope better with occurring delays, even on large-scale datasets and with low computational effort.

Suggested Citation

  • Julius Pätzold, 2021. "Finding robust periodic timetables by integrating delay management," Public Transport, Springer, vol. 13(2), pages 349-374, June.
  • Handle: RePEc:spr:pubtra:v:13:y:2021:i:2:d:10.1007_s12469-020-00260-y
    DOI: 10.1007/s12469-020-00260-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-020-00260-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-020-00260-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Twan Dollevoet & Dennis Huisman & Marie Schmidt & Anita Schöbel, 2018. "Delay Propagation and Delay Management in Transportation Networks," International Series in Operations Research & Management Science, in: Ralf Borndörfer & Torsten Klug & Leonardo Lamorgese & Carlo Mannino & Markus Reuther & Thomas Schlec (ed.), Handbook of Optimization in the Railway Industry, chapter 0, pages 285-317, Springer.
    2. Twan Dollevoet & Dennis Huisman & Marie Schmidt & Anita Schöbel, 2012. "Delay Management with Rerouting of Passengers," Transportation Science, INFORMS, vol. 46(1), pages 74-89, February.
    3. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    4. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    5. Ralf Borndörfer & Heide Hoppmann & Marika Karbstein, 2017. "Passenger routing for periodic timetable optimization," Public Transport, Springer, vol. 9(1), pages 115-135, July.
    6. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
    7. Cacchiani, Valentina & Toth, Paolo, 2012. "Nominal and robust train timetabling problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 727-737.
    8. Odijk, Michiel A., 1996. "A constraint generation algorithm for the construction of periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 455-464, December.
    9. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.
    11. Heilporn, Géraldine & De Giovanni, Luigi & Labbé, Martine, 2008. "Optimization models for the single delay management problem in public transportation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 762-774, September.
    12. Marie E. Schmidt, 2014. "Integrating Routing Decisions in Public Transportation Problems," Springer Optimization and Its Applications, Springer, edition 127, number 978-1-4614-9566-6, December.
    13. Valentina Cacchiani & Alberto Caprara & Matteo Fischetti, 2012. "A Lagrangian Heuristic for Robustness, with an Application to Train Timetabling," Transportation Science, INFORMS, vol. 46(1), pages 124-133, February.
    14. Christian Liebchen, 2007. "Periodic Timetable Optimization in Public Transport," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 29-36, Springer.
    15. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Hartleb, J. & Schmidt, M.E. & Friedrich, M. & Huisman, D., 2019. "A good or a bad timetable: Do different evaluation functions agree?," ERIM Report Series Research in Management ERS-2019-002-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Matteo Fischetti & Domenico Salvagnin & Arrigo Zanette, 2009. "Fast Approaches to Improve the Robustness of a Railway Timetable," Transportation Science, INFORMS, vol. 43(3), pages 321-335, August.
    18. Hanne L. Petersen & Allan Larsen & Oli B. G. Madsen & Bjørn Petersen & Stefan Ropke, 2013. "The Simultaneous Vehicle Scheduling and Passenger Service Problem," Transportation Science, INFORMS, vol. 47(4), pages 603-616, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schön, Cornelia & König, Eva, 2018. "A stochastic dynamic programming approach for delay management of a single train line," European Journal of Operational Research, Elsevier, vol. 271(2), pages 501-518.
    2. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    3. Eva König, 2020. "A review on railway delay management," Public Transport, Springer, vol. 12(2), pages 335-361, June.
    4. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    5. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    6. Mizuyo Takamatsu & Azuma Taguchi, 2020. "Bus Timetable Design to Ensure Smooth Transfers in Areas with Low-Frequency Public Transportation Services," Transportation Science, INFORMS, vol. 54(5), pages 1238-1250, September.
    7. Polinder, Gert-Jaap & Schmidt, Marie & Huisman, Dennis, 2021. "Timetabling for strategic passenger railway planning," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 111-135.
    8. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    9. Jonas Harbering, 2017. "Delay resistant line planning with a view towards passenger transfers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 467-496, October.
    10. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    11. Jiateng Yin & Lixing Yang & Xuesong Zhou & Tao Tang & Ziyou Gao, 2019. "Balancing a one‐way corridor capacity and safety‐oriented reliability: A stochastic optimization approach for metro train timetabling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 297-320, June.
    12. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Rolf N. Van Lieshout, 2021. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Transportation Science, INFORMS, vol. 55(3), pages 768-790, May.
    14. Högdahl, Johan & Bohlin, Markus & Fröidh, Oskar, 2019. "A combined simulation-optimization approach for minimizing travel time and delays in railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 192-212.
    15. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    16. Lee, Yusin & Lu, Li-Sin & Wu, Mei-Ling & Lin, Dung-Ying, 2017. "Balance of efficiency and robustness in passenger railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 142-156.
    17. Martin-Iradi, Bernardo & Ropke, Stefan, 2022. "A column-generation-based matheuristic for periodic and symmetric train timetabling with integrated passenger routing," European Journal of Operational Research, Elsevier, vol. 297(2), pages 511-531.
    18. van Lieshout, R.N., 2019. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Econometric Institute Research Papers EI2019-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Cacchiani, Valentina & Qi, Jianguo & Yang, Lixing, 2020. "Robust optimization models for integrated train stop planning and timetabling with passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 1-29.
    20. Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:13:y:2021:i:2:d:10.1007_s12469-020-00260-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.