IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v16y2024i2d10.1007_s12469-023-00344-5.html
   My bibliography  Save this article

State of the art of passenger redirection during incidents in public transport systems, considering capacity constraints

Author

Listed:
  • Frederik R. Bachmann

    (Technical University of Munich)

  • Antonios Tsakarestos

    (Technical University of Munich)

  • Fritz Busch

    (Technical University of Munich)

  • Klaus Bogenberger

    (Technical University of Munich)

Abstract

This paper gives a comprehensive insight into the investigations done in passenger redirection during incidents in public transport systems. In public transport operations, incidents such as traffic accidents, deployment of emergency forces, or technical failures happen every day and disrupt the service. Most of the investigations done in the field of incident management focus on the readjustment of the supply towards the incident situation and are therefore referred to as supply-centric part of incident management. However, especially in recent years, more and more investigations have also been done on the passenger-centric part of incident management. These rather focus on the effects of incidents on passengers or even include them in the solution of the incident situation, either by informing them adequately about the given situation (passive redirection) or by providing them with concrete path advice (active redirection). The results show that adequate passenger information during incidents can reduce the average delay of affected passengers and support the recovery of the public transport system. This improves the reliability of a public transport system and boosts its attractiveness.

Suggested Citation

  • Frederik R. Bachmann & Antonios Tsakarestos & Fritz Busch & Klaus Bogenberger, 2024. "State of the art of passenger redirection during incidents in public transport systems, considering capacity constraints," Public Transport, Springer, vol. 16(2), pages 419-447, June.
  • Handle: RePEc:spr:pubtra:v:16:y:2024:i:2:d:10.1007_s12469-023-00344-5
    DOI: 10.1007/s12469-023-00344-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-023-00344-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-023-00344-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evelien van der Hurk & Leo Kroon & Gábor Maróti, 2018. "Passenger Advice and Rolling Stock Rescheduling Under Uncertainty for Disruption Management," Service Science, INFORMS, vol. 52(6), pages 1391-1411, December.
    2. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    3. Leo Kroon & Gábor Maróti & Lars Nielsen, 2015. "Rescheduling of Railway Rolling Stock with Dynamic Passenger Flows," Transportation Science, INFORMS, vol. 49(2), pages 165-184, May.
    4. Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
    5. Oded Cats & Erik Jenelius, 2014. "Dynamic Vulnerability Analysis of Public Transport Networks: Mitigation Effects of Real-Time Information," Networks and Spatial Economics, Springer, vol. 14(3), pages 435-463, December.
    6. Bradley Casey & Ashish Bhaskar & Hao Guo & Edward Chung, 2014. "Critical Review of Time-Dependent Shortest Path Algorithms: A Multimodal Trip Planner Perspective," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 522-539, July.
    7. Daniel Delling & Thomas Pajor & Renato F. Werneck, 2015. "Round-Based Public Transit Routing," Transportation Science, INFORMS, vol. 49(3), pages 591-604, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Ho-Yin & Chen, Anthony & Li, Guoyuan & Xu, Xiangdong & Lam, William, 2021. "Evaluating the value of new metro lines using route diversity measures: The case of Hong Kong's Mass Transit Railway system," Journal of Transport Geography, Elsevier, vol. 91(C).
    2. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    3. Chang Han & Leishan Zhou & Bin Guo & Yixiang Yue & Wenqiang Zhao & Zeyu Wang & Hanxiao Zhou, 2023. "An Integrated Strategy for Rescheduling High-Speed Train Operation under Single-Direction Disruption," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    4. Arpit Shrivastava & Nishtha Rawat & Amit Agarwal, 2024. "Deep-learning-based model for prediction of crowding in a public transit system," Public Transport, Springer, vol. 16(2), pages 449-484, June.
    5. Iliopoulou, Christina & Makridis, Michail A., 2023. "Critical multi-link disruption identification for public transport networks: A multi-objective optimization framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    7. Luan, Xiaojie & Corman, Francesco, 2022. "Passenger-oriented traffic control for rail networks: An optimization model considering crowding effects on passenger choices and train operations," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 239-272.
    8. Panagiotis Georgakis & Adel Almohammad & Efthimios Bothos & Babis Magoutas & Kostantina Arnaoutaki & Gregoris Mentzas, 2020. "Heuristic-Based Journey Planner for Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    9. Altazin, Estelle & Dauzère-Pérès, Stéphane & Ramond, François & Tréfond, Sabine, 2020. "A multi-objective optimization-simulation approach for real time rescheduling in dense railway systems," European Journal of Operational Research, Elsevier, vol. 286(2), pages 662-672.
    10. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    11. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    12. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
    13. Mylonas, Chrysostomos & Mitsakis, Evangelos & Kepaptsoglou, Konstantinos, 2023. "Criticality analysis in road networks with graph-theoretic measures, traffic assignment, and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    14. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    15. Cats, O., 2016. "The robustness value of public transport development plans," Journal of Transport Geography, Elsevier, vol. 51(C), pages 236-246.
    16. Sun, Daniel (Jian) & Guan, Shituo, 2016. "Measuring vulnerability of urban metro network from line operation perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 348-359.
    17. Seda Yanık & Salim Yılmaz, 2023. "Optimal design of a bus route with short-turn services," Public Transport, Springer, vol. 15(1), pages 169-197, March.
    18. , Marcin Wozniak & Radzimski, Adam & Wajchman-Świtalska, Sandra, 2024. "Is More Always Better? Evaluating Accessibility to Parks and Forests in 33 European Cities Using Sustainable Modes of Transportation," OSF Preprints hcwgp, Center for Open Science.
    19. Apanasevic, Tatjana & Rudmark, Daniel, 2021. "Crowdsourcing and Public Transportation: Barriers and Opportunities," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238005, International Telecommunications Society (ITS).
    20. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:16:y:2024:i:2:d:10.1007_s12469-023-00344-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.