IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v34y2014i4p522-539.html
   My bibliography  Save this article

Critical Review of Time-Dependent Shortest Path Algorithms: A Multimodal Trip Planner Perspective

Author

Listed:
  • Bradley Casey
  • Ashish Bhaskar
  • Hao Guo
  • Edward Chung

Abstract

A multimodal trip planner that produces optimal journeys involving both public transport and private vehicle legs has to solve a number of shortest path problems, both on the road network and the public transport network. The algorithms that are used to solve these shortest path problems have been researched since the late 1950s. However, in order to provide accurate journey plans that can be trusted by the user, the variability of travel times caused by traffic congestion must be taken into consideration. This requires the use of more sophisticated time-dependent shortest path algorithms, which have only been researched in depth over the last two decades, from the mid-1990s. This paper will review and compare nine algorithms that have been proposed in the literature, discussing the advantages and disadvantages of each algorithm on the basis of five important criteria that must be considered when choosing one or more of them to implement in a multimodal trip planner.

Suggested Citation

  • Bradley Casey & Ashish Bhaskar & Hao Guo & Edward Chung, 2014. "Critical Review of Time-Dependent Shortest Path Algorithms: A Multimodal Trip Planner Perspective," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 522-539, July.
  • Handle: RePEc:taf:transr:v:34:y:2014:i:4:p:522-539
    DOI: 10.1080/01441647.2014.921797
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2014.921797
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2014.921797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Delling & Giacomo Nannicini, 2012. "Core Routing on Dynamic Time-Dependent Road Networks," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 187-201, May.
    2. Stuart E. Dreyfus, 1969. "An Appraisal of Some Shortest-Path Algorithms," Operations Research, INFORMS, vol. 17(3), pages 395-412, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiotis Georgakis & Adel Almohammad & Efthimios Bothos & Babis Magoutas & Kostantina Arnaoutaki & Gregoris Mentzas, 2020. "Heuristic-Based Journey Planner for Mobility as a Service (MaaS)," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    2. Zhaoxia Guo & Stein W. Wallace & Michal Kaut, 2019. "Vehicle Routing with Space- and Time-Correlated Stochastic Travel Times: Evaluating the Objective Function," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 654-670, October.
    3. Frederik R. Bachmann & Antonios Tsakarestos & Fritz Busch & Klaus Bogenberger, 2024. "State of the art of passenger redirection during incidents in public transport systems, considering capacity constraints," Public Transport, Springer, vol. 16(2), pages 419-447, June.
    4. López, David & Lozano, Angélica, 2020. "Shortest hyperpaths in a multimodal hypergraph with real-time information on some transit lines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 541-559.
    5. Nir Halman & Mikhail Y. Kovalyov & Alain Quilliot & Dvir Shabtay & Moshe Zofi, 2019. "Bi-criteria path problem with minimum length and maximum survival probability," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 469-489, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolando Quintero & Esteban Mendiola & Giovanni Guzmán & Miguel Torres-Ruiz & Carlos Guzmán Sánchez-Mejorada, 2023. "Algorithm for the Accelerated Calculation of Conceptual Distances in Large Knowledge Graphs," Mathematics, MDPI, vol. 11(23), pages 1-30, November.
    2. Pijls, Wim & Post, Henk, 2009. "A new bidirectional search algorithm with shortened postprocessing," European Journal of Operational Research, Elsevier, vol. 198(2), pages 363-369, October.
    3. Steven K. Peterson & Richard L. Church, 2008. "A Framework for Modeling Rail Transport Vulnerability," Growth and Change, Wiley Blackwell, vol. 39(4), pages 617-641, December.
    4. Yang, Jinling & Chen, Zhiwei & Criado, Regino & Zhang, Shenggui, 2024. "A mathematical framework for shortest path length computation in multi-layer networks with inter-edge weighting and dynamic inter-edge weighting: The case of the Beijing bus network, China," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    6. Dimitri P. Bertsekas, 2019. "Robust shortest path planning and semicontractive dynamic programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 15-37, February.
    7. Sinziana I. Rasca & Bin Hu & Benjamin Biesinger & Matthias Prandtstetter, 2024. "Agent-based decision-support model for bus route redesign in networks of small cities and towns: case study of Agder, Norway," Public Transport, Springer, vol. 16(2), pages 583-618, June.
    8. Yueyue Fan & Yu Nie, 2006. "Optimal Routing for Maximizing the Travel Time Reliability," Networks and Spatial Economics, Springer, vol. 6(3), pages 333-344, September.
    9. Azar Sadeghnejad-Barkousaraie & Rajan Batta & Moises Sudit, 2017. "Convoy movement problem: a civilian perspective," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 14-33, January.
    10. Irina S. Dolinskaya, 2012. "Optimal path finding in direction, location, and time dependent environments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 325-339, August.
    11. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    12. Irina S. Dolinskaya & Marina A. Epelman & Esra Şişikoğlu Sir & Robert L. Smith, 2016. "Parameter-Free Sampled Fictitious Play for Solving Deterministic Dynamic Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 631-655, May.
    13. Ahuja, Ravindra & Orlin, James & Pallottino, Stefano & Scutella, Maria, 2003. "Dynamic Shortest Paths Minimizing Travel Times And Costs," Working papers 4390-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    14. Francesca Guerriero & Roberto Musmanno & Valerio Lacagnina & Antonio Pecorella, 2001. "A Class of Label-Correcting Methods for the K Shortest Paths Problem," Operations Research, INFORMS, vol. 49(3), pages 423-429, June.
    15. Hanif D. Sherali & Antoine G. Hobeika & Sasikul Kangwalklai, 2003. "Time-Dependent, Label-Constrained Shortest Path Problems with Applications," Transportation Science, INFORMS, vol. 37(3), pages 278-293, August.
    16. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    17. Daniel Selva & Bruce Cameron & Ed Crawley, 2016. "Patterns in System Architecture Decisions," Systems Engineering, John Wiley & Sons, vol. 19(6), pages 477-497, November.
    18. Luigi Di Puglia Pugliese & Francesca Guerriero, 2016. "On the shortest path problem with negative cost cycles," Computational Optimization and Applications, Springer, vol. 63(2), pages 559-583, March.
    19. Fu, Liping, 2001. "An adaptive routing algorithm for in-vehicle route guidance systems with real-time information," Transportation Research Part B: Methodological, Elsevier, vol. 35(8), pages 749-765, September.
    20. Daniel Delling & Giacomo Nannicini, 2012. "Core Routing on Dynamic Time-Dependent Road Networks," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 187-201, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:34:y:2014:i:4:p:522-539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.