Improving alighting stop inference accuracy in the trip chaining method using neural networks
Author
Abstract
Suggested Citation
DOI: 10.1007/s12469-019-00218-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ziqin Lan & Zixuan Zhang & Jiatao Chen & Ming Cai, 2024. "Inferring alighting bus stops from smart card data combined with cellular signaling data," Transportation, Springer, vol. 51(4), pages 1433-1465, August.
- Zhanhong Cheng & Martin Trépanier & Lijun Sun, 2021. "Probabilistic model for destination inference and travel pattern mining from smart card data," Transportation, Springer, vol. 48(4), pages 2035-2053, August.
- Jin, Meihan & Wang, Menghan & Gong, Yongxi & Liu, Yu, 2022. "Spatio-temporally constrained origin–destination inferring using public transit fare card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
- Apanasevic, Tatjana & Rudmark, Daniel, 2021. "Crowdsourcing and Public Transportation: Barriers and Opportunities," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238005, International Telecommunications Society (ITS).
- Bantis, Thanos & Haworth, James, 2020. "Assessing transport related social exclusion using a capabilities approach to accessibility framework: A dynamic Bayesian network approach," Journal of Transport Geography, Elsevier, vol. 84(C).
- Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
- De Zhao & Wei Wang & Amber Woodburn & Megan S. Ryerson, 2017. "Isolating high-priority metro and feeder bus transfers using smart card data," Transportation, Springer, vol. 44(6), pages 1535-1554, November.
- Hamed Faroqi & Mahmoud Mesbah & Jiwon Kim & Ali Khodaii, 2022. "Targeted Advertising in the Public Transit Network Using Smart Card Data," Networks and Spatial Economics, Springer, vol. 22(1), pages 97-124, March.
- Egu, Oscar & Bonnel, Patrick, 2020.
"How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon,"
Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 267-282.
- Oscar Egu & Patrick Bonnel, 2020. "How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon," Post-Print halshs-03166319, HAL.
- Amarin Siripanich & Taha Hossein Rashidi & Emily Moylan, 2019. "Interaction of Public Transport Accessibility and Residential Property Values Using Smart Card Data," Sustainability, MDPI, vol. 11(9), pages 1-24, May.
- Bernal, Margarita & Welch, Eric W. & Sriraj, P.S., 2016. "The effect of slow zones on ridership: An analysis of the Chicago Transit Authority “El” Blue Line," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 11-21.
- (Giancarlo) Falcocchio, John C. & Malik, Awais & Kontokosta, Constantine E., 2018. "A data-driven methodology for equitable value-capture financing of public transit operations and maintenance," Transport Policy, Elsevier, vol. 66(C), pages 107-115.
- Ruben Sánchez-Corcuera & Adrián Nuñez-Marcos & Jesus Sesma-Solance & Aritz Bilbao-Jayo & Rubén Mulero & Unai Zulaika & Gorka Azkune & Aitor Almeida, 2019. "Smart cities survey: Technologies, application domains and challenges for the cities of the future," International Journal of Distributed Sensor Networks, , vol. 15(6), pages 15501477198, June.
- Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
- Zijia Wang & Hao Tang & Wenjuan Wang & Yang Xi, 2020. "The Pattern of Non-Roundtrip Travel on Urban Rail and Its Application in Transit Improvement," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
- Bagdatli, Muhammed Emin Cihangir & Ipek, Fatima, 2022. "Transport mode preferences of university students in post-COVID-19 pandemic," Transport Policy, Elsevier, vol. 118(C), pages 20-32.
- Anupriya, & Graham, Daniel J. & Hörcher, Daniel & Anderson, Richard J. & Bansal, Prateek, 2020. "Quantifying the ex-post causal impact of differential pricing on commuter trip scheduling in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 16-34.
- Kolkowski, Lukas & Cats, Oded & Dixit, Malvika & Verma, Trivik & Jenelius, Erik & Cebecauer, Matej & Rubensson, Isak Jarlebring, 2023. "Measuring activity-based social segregation using public transport smart card data," Journal of Transport Geography, Elsevier, vol. 110(C).
- Brakewood, Candace & Ziedan, Abubakr & Hendricks, Sara J. & Barbeau, Sean J. & Joslin, Ann, 2020. "An evaluation of the benefits of mobile fare payment technology from the user and operator perspectives," Transport Policy, Elsevier, vol. 93(C), pages 54-66.
- Arbex, Renato & Cunha, Claudio B., 2020. "Estimating the influence of crowding and travel time variability on accessibility to jobs in a large public transport network using smart card big data," Journal of Transport Geography, Elsevier, vol. 85(C).
- Oscar Egu & Patrick Bonnel, 2020. "Investigating day-to-day variability of transit usage on a multimonth scale with smart card data. A case study in Lyon," Post-Print halshs-03148937, HAL.
- Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
More about this item
Keywords
Origin–destination (OD) estimation; Alighting stop inference; Trip-chaining method; Error distribution; Neural network; Deep learning; Public transport; Smartcard data;All these keywords.
JEL classification:
- R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:12:y:2020:i:1:d:10.1007_s12469-019-00218-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.