IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-03148937.html
   My bibliography  Save this paper

Investigating day-to-day variability of transit usage on a multimonth scale with smart card data. A case study in Lyon

Author

Listed:
  • Oscar Egu

    (LAET - Laboratoire Aménagement Économie Transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Patrick Bonnel

    (LAET - Laboratoire Aménagement Économie Transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

Abstract

To examine the variability of travel behaviour over time, transportation researchers need to collect longitudinal data. The first studies around day-to-day variability of travel behaviour were based on surveys. Those studies have shown that there is considerable variation in individual travel behaviour. They have also discussed the implications of this variability in terms of modelling, policy evaluation or marketing. Recently, the multiplication of big data has led to an explosion in the number of studies about travel behaviour. This is because those new data sources collect lots of data, about lots of people over long periods. In the field of public transit, smart card data is one of those big data sources. They have been used by various authors to conduct longitudinal analyses of transit usage behaviour. However, researchers working with smart card data mostly rely on clustering techniques to measure variability, and they often use conceptual framework different from those of transportation researchers familiar with traditional data sources. In particular, there is no study based on smart card data that explicitly measure day-to-day intrapersonal variability of transit usage. Therefore, the purpose of this investigation is to address this gap. To do this, a clustering method and a similarity metric are combined to explore simultaneously interpersonal and intrapersonal variability of transit usage. The application is done with a rich dataset covering a 6 months period (181 days) and it contributes to the growing literature on smart card data. Results of this research confirm previous works based on survey data and show that there is no one size fits all approach to the problem of day-to-day variability of transit usage. They also prove that combining clustering algorithm with day-to-day intrapersonal similarity metric is a valuable tool to mine smart card data. The findings of this study can help in identifying new passenger segmentation and in tailoring information and services.

Suggested Citation

  • Oscar Egu & Patrick Bonnel, 2020. "Investigating day-to-day variability of transit usage on a multimonth scale with smart card data. A case study in Lyon," Post-Print halshs-03148937, HAL.
  • Handle: RePEc:hal:journl:halshs-03148937
    DOI: 10.1016/j.tbs.2019.12.003
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03148937
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03148937/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.tbs.2019.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tommy Gärling & Kay Axhausen, 2003. "Introduction: Habitual travel choice," Transportation, Springer, vol. 30(1), pages 1-11, February.
    2. Charles Raux & Tai-Yu Ma & Eric Cornelis, 2016. "Variability in daily activity-travel patterns: the case of a one-week travel diary," Post-Print halshs-01389479, HAL.
    3. Bagchi, M. & White, P.R., 2005. "The potential of public transport smart card data," Transport Policy, Elsevier, vol. 12(5), pages 464-474, September.
    4. Yusak Susilo & Kay Axhausen, 2014. "Repetitions in individual daily activity–travel–location patterns: a study using the Herfindahl–Hirschman Index," Transportation, Springer, vol. 41(5), pages 995-1011, September.
    5. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahnow, Renee & Abewickrema, Wanuji, 2023. "Examining regularity in vehicular traffic through Bluetooth scanner data: Is the daily commuter the regular road user?," Journal of Transport Geography, Elsevier, vol. 109(C).
    2. Gao, Jie & He, Sylvia Y. & Ettema, Dick & Helbich, Marco, 2023. "Travel behavior changes due to life events: Longitudinal evidence from Dutch couple households," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    3. Uğur Baç, 2020. "An Integrated SWARA-WASPAS Group Decision Making Framework to Evaluate Smart Card Systems for Public Transportation," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    4. Liu, Shasha & Yamamoto, Toshiyuki & Yao, Enjian & Nakamura, Toshiyuki, 2021. "Examining public transport usage by older adults with smart card data: A longitudinal study in Japan," Journal of Transport Geography, Elsevier, vol. 93(C).
    5. Cong Liao & Teqi Dai, 2022. "Is “Attending Nearby School” Near? An Analysis of Travel-to-School Distances of Primary Students in Beijing Using Smart Card Data," Sustainability, MDPI, vol. 14(7), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    2. Liao, Cong & Scheuer, Bronte, 2022. "Evaluating the performance of transit-oriented development in Beijing metro station areas: Integrating morphology and demand into the node-place model," Journal of Transport Geography, Elsevier, vol. 100(C).
    3. Benito Zaragozí & Sergio Trilles & Aaron Gutiérrez & Daniel Miravet, 2021. "Development of a Common Framework for Analysing Public Transport Smart Card Data," Energies, MDPI, vol. 14(19), pages 1-22, September.
    4. Xia Zhao & Mengying Cui & David Levinson, 2023. "Exploring temporal variability in travel patterns on public transit using big smart card data," Environment and Planning B, , vol. 50(1), pages 198-217, January.
    5. Thomas, Tom & La Paix Puello, Lissy & Geurs, Karst, 2019. "Intrapersonal mode choice variation: Evidence from a four-week smartphone-based travel survey in the Netherlands," Journal of Transport Geography, Elsevier, vol. 76(C), pages 287-300.
    6. Gutiérrez, Aaron & Domènech, Antoni & Zaragozí, Benito & Miravet, Daniel, 2020. "Profiling tourists' use of public transport through smart travel card data," Journal of Transport Geography, Elsevier, vol. 88(C).
    7. Lovejoy, Kristin, 2012. "Mobility Fulfillment Among Low-car Households: Implications for Reducing Auto Dependence in the United States," Institute of Transportation Studies, Working Paper Series qt4v44b5qn, Institute of Transportation Studies, UC Davis.
    8. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    9. Kazagli, Evanthia & de Lapparent, Matthieu, 2023. "A discrete choice modeling framework of heterogenous decision rules accounting for non-trading behavior," Journal of choice modelling, Elsevier, vol. 48(C).
    10. Kevin Credit & Zander Arnao, 2023. "A method to derive small area estimates of linked commuting trips by mode from open source LODES and ACS data," Environment and Planning B, , vol. 50(3), pages 709-722, March.
    11. Chunguang Liu & Xinyu Zuo & Xiaoning Gu & Mengru Shao & Chao Chen, 2023. "Activity Duration under the COVID-19 Pandemic: A Comparative Analysis among Different Urbanized Areas Using a Hazard-Based Duration Model," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    12. Kevin Maréchal, 2018. "Recasting the understanding of habits for behaviour-oriented policies in transportation," ULB Institutional Repository 2013/270475, ULB -- Universite Libre de Bruxelles.
    13. Caspar G. Chorus & Benedict G. C. Dellaert, 2012. "Travel Choice Inertia: The Joint Role of Risk Aversion and Learning," Journal of Transport Economics and Policy, University of Bath, vol. 46(1), pages 139-155, January.
    14. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    15. Ravi Kashyap, 2024. "The Concentration Risk Indicator: Raising the Bar for Financial Stability and Portfolio Performance Measurement," Papers 2408.07271, arXiv.org.
    16. Apanasevic, Tatjana & Rudmark, Daniel, 2021. "Crowdsourcing and Public Transportation: Barriers and Opportunities," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238005, International Telecommunications Society (ITS).
    17. Bantis, Thanos & Haworth, James, 2020. "Assessing transport related social exclusion using a capabilities approach to accessibility framework: A dynamic Bayesian network approach," Journal of Transport Geography, Elsevier, vol. 84(C).
    18. Mourtakos, Vasileios & Mantouka, Eleni G. & Fafoutellis, Panagiotis & Vlahogianni, Eleni I. & Kepaptsoglou, Konstantinos, 2024. "Reconstructing mobility from smartphone data: Empirical evidence of the effects of COVID-19 pandemic crisis on working and leisure," Transport Policy, Elsevier, vol. 146(C), pages 241-254.
    19. Pascal Un & Sonia Adelé & Flore Vallet & Jean-Marie Burkhardt, 2022. "How Does My Train Line Run? Elicitation of Six Information-Seeking Profiles of Regular Suburban Train Users," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    20. Lattarulo, Patrizia & Masucci, Valentino & Pazienza, Maria Grazia, 2019. "Resistance to change: Car use and routines," Transport Policy, Elsevier, vol. 74(C), pages 63-72.

    More about this item

    Keywords

    Public transit; Travel behavior; Smart card data; Passenger clustering; Day-to-day variability; User segmentation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-03148937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.