IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v048c01.html
   My bibliography  Save this article

IRTrees: Tree-Based Item Response Models of the GLMM Family

Author

Listed:
  • De Boeck, Paul
  • Partchev, Ivailo

Abstract

A category of item response models is presented with two defining features: they all (i) have a tree representation, and (ii) are members of the family of generalized linear mixed models (GLMM). Because the models are based on trees, they are denoted as IRTree models. The GLMM nature of the models implies that they can all be estimated with the glmer function of the lme4 package in R. The aim of the article is to present four subcategories of models, the first two of which are based on a tree representation for response categories: 1. linear response tree models (e.g., missing response models), 2. nested response tree models (e.g., models for parallel observations regarding item responses such as agreement and certainty), while the last two are based on a tree representation for latent variables: 3. linear latent-variable tree models (e.g., models for change processes), and 4. nested latent-variable tree models (e.g., bi-factor models). The use of the glmer function is illustrated for all four subcategories. Simulated example data sets and two service functions useful in preparing the data for IRTree modeling with glmer are provided in the form of an R package, irtrees. For all four subcategories also a real data application is discussed.

Suggested Citation

  • De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
  • Handle: RePEc:jss:jstsof:v:048:c01
    DOI: http://hdl.handle.net/10.18637/jss.v048.c01
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v048c01/v48c01.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v048c01/irtrees_0.1.0.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v048c01/v48c01.R
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v048c01/fsdatT.rda
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v048c01/stressT.rda
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v048.c01?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    2. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    3. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    4. Joe, Harry, 2008. "Accuracy of Laplace approximation for discrete response mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5066-5074, August.
    5. Doran, Harold & Bates, Douglas & Bliese, Paul & Dowling, Maritza, 2007. "Estimating the Multilevel Rasch Model: With the lme4 Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i02).
    6. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    7. Susan Embretson, 1991. "A multidimensional latent trait model for measuring learning and change," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 495-515, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minjeong Jeon & Paul De Boeck & Wim van der Linden, 2017. "Modeling Answer Change Behavior: An Application of a Generalized Item Response Tree Model," Journal of Educational and Behavioral Statistics, , vol. 42(4), pages 467-490, August.
    2. Anne Thissen-Roe & David Thissen, 2013. "A Two-Decision Model for Responses to Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 38(5), pages 522-547, October.
    3. Nana Kim & Daniel M. Bolt & James Wollack, 2022. "Noncompensatory MIRT For Passage-Based Tests," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 992-1009, September.
    4. Gerhard Tutz, 2021. "Hierarchical Models for the Analysis of Likert Scales in Regression and Item Response Analysis," International Statistical Review, International Statistical Institute, vol. 89(1), pages 18-35, April.
    5. Yingbin Zhang & Zhaoxi Yang & Yehui Wang, 2022. "The Impact of Extreme Response Style on the Mean Comparison of Two Independent Samples," SAGE Open, , vol. 12(2), pages 21582440221, June.
    6. Andrés López-Sepulcre & Sebastiano De Bona & Janne K. Valkonen & Kate D.L. Umbers & Johanna Mappes, 2015. "Item Response Trees: a recommended method for analyzing categorical data in behavioral studies," Behavioral Ecology, International Society for Behavioral Ecology, vol. 26(5), pages 1268-1273.
    7. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Jianhong Shen, 2020. "Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 154-184, March.
    8. Brooke E. Magnus & David Thissen, 2017. "Item Response Modeling of Multivariate Count Data With Zero Inflation, Maximum Inflation, and Heaping," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 531-558, October.
    9. Gerhard Tutz & Moritz Berger, 2016. "Response Styles in Rating Scales," Journal of Educational and Behavioral Statistics, , vol. 41(3), pages 239-268, June.
    10. Dora Matzke & Conor Dolan & William Batchelder & Eric-Jan Wagenmakers, 2015. "Bayesian Estimation of Multinomial Processing Tree Models with Heterogeneity in Participants and Items," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 205-235, March.
    11. Niccolò Cao & Antonio Calcagnì, 2022. "Jointly Modeling Rating Responses and Times with Fuzzy Numbers: An Application to Psychometric Data," Mathematics, MDPI, vol. 10(7), pages 1-11, March.
    12. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    13. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    14. Quentin F. Gronau & Eric-Jan Wagenmakers & Daniel W. Heck & Dora Matzke, 2019. "A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 261-284, March.
    15. Mark L. Davison & David J. Weiss & Joseph N. DeWeese & Ozge Ersan & Gina Biancarosa & Patrick C. Kennedy, 2023. "A Diagnostic Tree Model for Adaptive Assessment of Complex Cognitive Processes Using Multidimensional Response Options," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 914-941, December.
    16. Thorsten Meiser & Fabiola Reiber, 2023. "Item-Specific Factors in IRTree Models: When They Matter and When They Don’t," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 739-744, September.
    17. Yi Chen & Benjamin Lugu & Wenchao Ma & Hyemin Han, 2024. "Scoring Individual Moral Inclination for the CNI Test," Stats, MDPI, vol. 7(3), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    2. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    3. David Magis, 2015. "A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 96-105, February.
    4. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    5. Andersson, Björn & Jin, Shaobo & Zhang, Maoxin, 2023. "Fast estimation of multiple group generalized linear latent variable models for categorical observed variables," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    6. Henk Kelderman & Carl Rijkes, 1994. "Loglinear multidimensional IRT models for polytomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 59(2), pages 149-176, June.
    7. David Magis, 2015. "A Note on Weighted Likelihood and Jeffreys Modal Estimation of Proficiency Levels in Polytomous Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 200-204, March.
    8. Timothy R. Johnson & Daniel M. Bolt, 2010. "On the Use of Factor-Analytic Multinomial Logit Item Response Models to Account for Individual Differences in Response Style," Journal of Educational and Behavioral Statistics, , vol. 35(1), pages 92-114, February.
    9. Silvana Bortolotti & Rafael Tezza & Dalton Andrade & Antonio Bornia & Afonso Sousa Júnior, 2013. "Relevance and advantages of using the item response theory," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2341-2360, June.
    10. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.
    11. David Magis & Norman Verhelst, 2017. "On the Finiteness of the Weighted Likelihood Estimator of Ability," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 637-647, September.
    12. P. A. Ferrari & S. Salini, 2008. "Measuring Service Quality: The Opinion of Europeans about Utilities," Working Papers 2008.36, Fondazione Eni Enrico Mattei.
    13. Chang, Hsin-Li & Yang, Cheng-Hua, 2008. "Explore airlines’ brand niches through measuring passengers’ repurchase motivation—an application of Rasch measurement," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 105-112.
    14. Ivana Bassi & Matteo Carzedda & Enrico Gori & Luca Iseppi, 2022. "Rasch analysis of consumer attitudes towards the mountain product label," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-25, December.
    15. Antonio Caronni & Marina Ramella & Pietro Arcuri & Claudia Salatino & Lucia Pigini & Maurizio Saruggia & Chiara Folini & Stefano Scarano & Rosa Maria Converti, 2023. "The Rasch Analysis Shows Poor Construct Validity and Low Reliability of the Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST 2.0) Questionnaire," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    16. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.
    17. Curt Hagquist & Raili Välimaa & Nina Simonsen & Sakari Suominen, 2017. "Differential Item Functioning in Trend Analyses of Adolescent Mental Health – Illustrative Examples Using HBSC-Data from Finland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 10(3), pages 673-691, September.
    18. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    19. Salzberger, Thomas & Newton, Fiona J. & Ewing, Michael T., 2014. "Detecting gender item bias and differential manifest response behavior: A Rasch-based solution," Journal of Business Research, Elsevier, vol. 67(4), pages 598-607.
    20. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:048:c01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.