IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v21y2024i9p1153-d1467763.html
   My bibliography  Save this article

The Impacts of COVID-19 Lockdowns on Road Transport Air Pollution in London: A State-Space Modelling Approach

Author

Listed:
  • Hajar Hajmohammadi

    (Centre for Primary Care, Wolfson Institute of Population Health, Queen Mary University of London, London E1 4NS, UK)

  • Hamid Salehi

    (School of Engineering, University of Greenwich, Chatham ME4 4TB, UK)

Abstract

The emergence of the COVID-19 pandemic in 2020 led to the implementation of legal restrictions on individual activities, significantly impacting traffic and air pollution levels in urban areas. This study employs a state-space intervention method to investigate the effects of three major COVID-19 lockdowns in March 2020, November 2020, and January 2021 on London’s air quality. Data were collected from 20 monitoring stations across London (central, ultra-low emission zone, and greater London), with daily measurements of NO x , PM 10 , and PM 2.5 for four years (January 2019–December 2022). Furthermore, the developed model was adjusted for seasonal effects, ambient temperature, and relative humidity. This study found significant reductions in the NO x levels during the first lockdown: 49% in central London, 33% in the ultra-low emission zone (ULEZ), and 37% in greater London. Although reductions in NO x were also observed during the second and third lockdowns, they were less than the first lockdown. In contrast, PM 10 and PM 2.5 increased by 12% and 1%, respectively, during the first lockdown, possibly due to higher residential energy consumption. However, during the second lockdown, PM 10 and PM 2.5 levels decreased by 11% and 13%, respectively, and remained unchanged during the third lockdown. These findings highlight the complex dynamics of urban air quality and underscore the need for targeted interventions to address specific pollution sources, particularly those related to road transport. The study provides valuable insights into the effectiveness of lockdown measures and informs future air quality management strategies.

Suggested Citation

  • Hajar Hajmohammadi & Hamid Salehi, 2024. "The Impacts of COVID-19 Lockdowns on Road Transport Air Pollution in London: A State-Space Modelling Approach," IJERPH, MDPI, vol. 21(9), pages 1-12, August.
  • Handle: RePEc:gam:jijerp:v:21:y:2024:i:9:p:1153-:d:1467763
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/21/9/1153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/21/9/1153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    2. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    3. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    4. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    5. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    6. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    7. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    8. repec:jss:jstsof:16:i01 is not listed on IDEAS
    9. Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
    10. Rodríguez, Alejandro & Ruiz, Esther, 2012. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
    11. Alexander Kreuzer & Luciana Dalla Valle & Claudia Czado, 2022. "A Bayesian non‐linear state space copula model for air pollution in Beijing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 613-638, June.
    12. Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006. "Bayesian analysis of the stochastic conditional duration model," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
    13. Scharth, Marcel & Kohn, Robert, 2016. "Particle efficient importance sampling," Journal of Econometrics, Elsevier, vol. 190(1), pages 133-147.
    14. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    15. Robert A. Hill & Paulo M. M. Rodrigues, 2022. "Forgetting approaches to improve forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1356-1371, November.
    16. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    17. Ahn, Kwang Woo & Chan, Kung-Sik, 2014. "Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 243-254.
    18. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
    19. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    20. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
    21. Siem Jan Koopman & André Lucas & Marcel Scharth, 2015. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:21:y:2024:i:9:p:1153-:d:1467763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.