A Bayesian non‐linear state space copula model for air pollution in Beijing
Author
Abstract
Suggested Citation
DOI: 10.1111/rssc.12548
Download full text from publisher
References listed on IDEAS
- Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
- J. Durbin & S. J. Koopman, 2000.
"Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Discussion Paper 1998-142, Tilburg University, Center for Economic Research.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
- Chen, Xiaohong & Fan, Yanqin, 2006.
"Estimation of copula-based semiparametric time series models,"
Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
- Xiaohong Chen & Yanqin Fan, 2002. "Estimation of Copula-Based Semiparametric Time Series Models," Vanderbilt University Department of Economics Working Papers 0226, Vanderbilt University Department of Economics, revised Oct 2004.
- Yanqin Fan & Xiaohong Chen, 2004. "Estimation of Copula-Based Semiparametric Time Series Models," Econometric Society 2004 Far Eastern Meetings 559, Econometric Society.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Shi Chen & John Fricks & Matthew J. Ferrari, 2012. "Tracking measles infection through non‐linear state space models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(1), pages 117-134, January.
- Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- Sujit K. Sahu & Kanti V. Mardia, 2005. "A Bayesian kriged Kalman model for short‐term forecasting of air pollution levels," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 223-244, January.
- Gavin Shaddick & Matthew L. Thomas & Amelia Green & Michael Brauer & Aaron van Donkelaar & Rick Burnett & Howard H. Chang & Aaron Cohen & Rita Van Dingenen & Carlos Dora & Sophie Gumy & Yang Liu & Ran, 2018. "Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(1), pages 231-253, January.
- Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
- S. J. Koopman & G. Mesters, 2017.
"Empirical Bayes Methods for Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 486-498, July.
- Siem Jan Koopman & Geert Mesters, 2014. "Empirical Bayes Methods for Dynamic Factor Models," Tinbergen Institute Discussion Papers 14-061/III, Tinbergen Institute.
- J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kreuzer, Alexander & Dalla Valle, Luciana & Czado, Claudia, 2023. "Bayesian multivariate nonlinear state space copula models," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Falk Bräuning & Siem Jan Koopman, 2016.
"The dynamic factor network model with an application to global credit risk,"
Working Papers
16-13, Federal Reserve Bank of Boston.
- Falk Bräuning & Siem Jan Koopman, 2016. "The Dynamic Factor Network Model with an Application to Global Credit-Risk," Tinbergen Institute Discussion Papers 16-105/III, Tinbergen Institute.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
- Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
- Rodríguez, Alejandro & Ruiz, Esther, 2012.
"Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 62-74, January.
- Rodríguez, Alejandro, 2010. "Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters," DES - Working Papers. Statistics and Econometrics. WS ws100301, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2013. "On the Stratonovich – Kalman - Bucy filtering algorithm application for accurate characterization of financial time series with use of state-space model by central banks," MPRA Paper 50235, University Library of Munich, Germany.
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2015.
"Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State-Space Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 114-127, January.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2011. "Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 11-057/4, Tinbergen Institute, revised 27 Jan 2012.
- Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- G. Mesters & S. J. Koopman & M. Ooms, 2016.
"Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 659-687, April.
- Geert Mesters & Siem Jan Koopman & Marius Ooms, 2011. "Monte Carlo Maximum Likelihood Estimation for Generalized Long-Memory Time Series Models," Tinbergen Institute Discussion Papers 11-090/4, Tinbergen Institute.
- Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
- Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
- Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
- Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
- Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.
- Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:3:p:613-638. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.