IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v44y2019i4p431-447.html
   My bibliography  Save this article

Estimation of Expected Fisher Information for IRT Models

Author

Listed:
  • Scott Monroe

    (University of Massachusetts Amherst)

Abstract

In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in practice, the expected information is not typically used, as it often requires a large amount of computation. In the present research, two methods to approximate the expected information by Monte Carlo are proposed. The first method is suitable for less complex IRT models such as unidimensional models. The second method is generally applicable but is designed for use with more complex models such as high-dimensional IRT models. The proposed methods are compared to existing methods using real data sets and a simulation study. The comparisons are based on simple structure multidimensional IRT models with two-parameter logistic item models.

Suggested Citation

  • Scott Monroe, 2019. "Estimation of Expected Fisher Information for IRT Models," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 431-447, August.
  • Handle: RePEc:sae:jedbes:v:44:y:2019:i:4:p:431-447
    DOI: 10.3102/1076998619838240
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998619838240
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998619838240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. Oakes, 1999. "Direct calculation of the information matrix via the EM," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 479-482, April.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Robert Gibbons & Donald Hedeker, 1992. "Full-information item bi-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 57(3), pages 423-436, September.
    4. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    5. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    6. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    7. Cees Glas, 1999. "Modification indices for the 2-PL and the nominal response model," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 273-294, September.
    8. Tom Snijders, 2001. "Asymptotic null distribution of person fit statistics with estimated person parameter," Psychometrika, Springer;The Psychometric Society, vol. 66(3), pages 331-342, September.
    9. C. Glas & N. Verhelst, 1989. "Extensions of the partial credit model," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 635-659, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scott Monroe, 2021. "Testing Latent Variable Distribution Fit in IRT Using Posterior Residuals," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 374-398, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    2. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    3. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    4. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    5. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    6. Guastadisegni, Lucia & Cagnone, Silvia & Moustaki, Irini & Vasdekis, Vassilis, 2022. "Use of the Lagrange multiplier test for assessing measurement invariance under model misspecification," LSE Research Online Documents on Economics 110358, London School of Economics and Political Science, LSE Library.
    7. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    8. Li Cai & Carrie R. Houts, 2021. "Longitudinal Analysis of Patient-Reported Outcomes in Clinical Trials: Applications of Multilevel and Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 754-777, September.
    9. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    10. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    11. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    12. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    13. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    14. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    15. Zhang, Haoran & Chen, Yunxiao & Li, Xiaoou, 2020. "A note on exploratory item factor analysis by singular value decomposition," LSE Research Online Documents on Economics 104166, London School of Economics and Political Science, LSE Library.
    16. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    17. Harry Joe & Alberto Maydeu-Olivares, 2010. "A General Family of Limited Information Goodness-of-Fit Statistics for Multinomial Data," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 393-419, September.
    18. Yang Liu & Weimeng Wang, 2022. "Semiparametric Factor Analysis for Item-Level Response Time Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 666-692, June.
    19. Ke-Hai Yuan & Ying Cheng & Jeff Patton, 2014. "Information Matrices and Standard Errors for MLEs of Item Parameters in IRT," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 232-254, April.
    20. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:44:y:2019:i:4:p:431-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.