IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i2d10.1007_s11336-018-9609-x.html
   My bibliography  Save this article

Missing Data Mechanisms and Homogeneity of Means and Variances–Covariances

Author

Listed:
  • Ke-Hai Yuan

    (Nanjing University of Posts and Telecommunications
    University of Notre Dame)

  • Mortaza Jamshidian

    (California State University, Fullerton)

  • Yutaka Kano

    (Osaka University)

Abstract

Unless data are missing completely at random (MCAR), proper methodology is crucial for the analysis of incomplete data. Consequently, methods for effectively testing the MCAR mechanism become important, and procedures were developed via testing the homogeneity of means and variances–covariances across the observed patterns (e.g., Kim & Bentler in Psychometrika 67:609–624, 2002; Little in J Am Stat Assoc 83:1198–1202, 1988). The current article shows that the population counterparts of the sample means and covariances of a given pattern of the observed data depend on the underlying structure that generates the data, and the normal-distribution-based maximum likelihood estimates for different patterns of the observed sample can converge to the same values even when data are missing at random or missing not at random, although the values may not equal those of the underlying population distribution. The results imply that statistics developed for testing the homogeneity of means and covariances cannot be safely used for testing the MCAR mechanism even when the population distribution is multivariate normal.

Suggested Citation

  • Ke-Hai Yuan & Mortaza Jamshidian & Yutaka Kano, 2018. "Missing Data Mechanisms and Homogeneity of Means and Variances–Covariances," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 425-442, June.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:2:d:10.1007_s11336-018-9609-x
    DOI: 10.1007/s11336-018-9609-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-018-9609-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-018-9609-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamshidian, Mortaza & Jalal, Siavash & Jansen, Camden, 2014. "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i06).
    2. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    3. Jun Li & Yao Yu, 2015. "A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 707-726, September.
    4. Kevin Kim & Peter Bentler, 2002. "Tests of homogeneity of means and covariance matrices for multivariate incomplete data," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 609-623, December.
    5. Mortaza Jamshidian & Siavash Jalal, 2010. "Tests of Homoscedasticity, Normality, and Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 649-674, December.
    6. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    7. Tang, Man-Lai & Bentler, Peter M., 1998. "Theory and method for constrained estimation in structural equation models with incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 27(3), pages 257-270, May.
    8. Annie Qu, 2002. "Testing ignorable missingness in estimating equation approaches for longitudinal data," Biometrika, Biometrika Trust, vol. 89(4), pages 841-850, December.
    9. Ke-Hai Yuan & Wai Chan & Yubin Tian, 2016. "Expectation-robust algorithm and estimating equations for means and dispersion matrix with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 329-351, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    2. Chassan, Malika & Concordet, Didier, 2023. "How to test the missing data mechanism in a hidden Markov model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    3. Jun Li & Yao Yu, 2015. "A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 707-726, September.
    4. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    5. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    6. Yuan, Ke-Hai & Savalei, Victoria, 2014. "Consistency, bias and efficiency of the normal-distribution-based MLE: The role of auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 353-370.
    7. Forthmann, Boris & Jendryczko, David & Scharfen, Jana & Kleinkorres, Ruben & Benedek, Mathias & Holling, Heinz, 2019. "Creative ideation, broad retrieval ability, and processing speed: A confirmatory study of nested cognitive abilities," Intelligence, Elsevier, vol. 75(C), pages 59-72.
    8. Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
    9. Jamshidian, Mortaza & Jalal, Siavash & Jansen, Camden, 2014. "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i06).
    10. Raquel Lourenço Carvalhal Monteiro & Valdecy Pereira & Helder Gomes Costa, 2020. "Dependence Analysis Between Childhood Social Indicators and Human Development Index Through Canonical Correlation Analysis," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 13(1), pages 337-362, February.
    11. Hayakawa, Kazuhiko, 2024. "Recent development of covariance structure analysis in economics," Econometrics and Statistics, Elsevier, vol. 29(C), pages 31-48.
    12. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    13. Breunig, Christoph, 2017. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2017-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Shen‐Ming Lee & Wen‐Han Hwang & Jean de Dieu Tapsoba, 2016. "Estimation in closed capture–recapture models when covariates are missing at random," Biometrics, The International Biometric Society, vol. 72(4), pages 1294-1304, December.
    15. Mortaza Jamshidian & Siavash Jalal, 2010. "Tests of Homoscedasticity, Normality, and Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 649-674, December.
    16. Serguei Rouzinov & André Berchtold, 2022. "Regression-Based Approach to Test Missing Data Mechanisms," Data, MDPI, vol. 7(2), pages 1-28, January.
    17. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    18. repec:hum:wpaper:sfb649dp2017-007 is not listed on IDEAS
    19. Védaste Habamenshi & Dr. Thomas K Tarus, 2022. "Financial managers’ perceptions on firm characteristics and internet financial reporting disclosure among selected financial institutions in Rwanda," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(8), pages 716-724, August.
    20. Jamshidian, Mortaza & Schott, James R., 2007. "Testing equality of covariance matrices when data are incomplete," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4227-4239, May.
    21. Breunig, Christoph, 2015. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2015-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:2:d:10.1007_s11336-018-9609-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.