IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v75y2010i4p649-674.html
   My bibliography  Save this article

Tests of Homoscedasticity, Normality, and Missing Completely at Random for Incomplete Multivariate Data

Author

Listed:
  • Mortaza Jamshidian
  • Siavash Jalal

Abstract

No abstract is available for this item.

Suggested Citation

  • Mortaza Jamshidian & Siavash Jalal, 2010. "Tests of Homoscedasticity, Normality, and Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 649-674, December.
  • Handle: RePEc:spr:psycho:v:75:y:2010:i:4:p:649-674
    DOI: 10.1007/s11336-010-9175-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-010-9175-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-010-9175-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Kim & Peter Bentler, 2002. "Tests of homogeneity of means and covariance matrices for multivariate incomplete data," Psychometrika, Springer;The Psychometric Society, vol. 67(4), pages 609-623, December.
    2. Mortaza Jamshidian & Peter M. Bentler, 1999. "ML Estimation of Mean and Covariance Structures with Missing Data Using Complete Data Routines," Journal of Educational and Behavioral Statistics, , vol. 24(1), pages 21-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Liu & Zhiwei Zhang & Lei Nie & Guoxing Soon, 2017. "A Case Study in Personalized Medicine: Rilpivirine Versus Efavirenz for Treatment-Naive HIV Patients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1381-1392, October.
    2. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    3. Chassan, Malika & Concordet, Didier, 2023. "How to test the missing data mechanism in a hidden Markov model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    4. Boris Forthmann & Mark A. Runco, 2020. "An Empirical Test of the Inter-Relationships between Various Bibliometric Creative Scholarship Indicators," Publications, MDPI, vol. 8(2), pages 1-16, June.
    5. Forthmann, Boris & Jendryczko, David & Scharfen, Jana & Kleinkorres, Ruben & Benedek, Mathias & Holling, Heinz, 2019. "Creative ideation, broad retrieval ability, and processing speed: A confirmatory study of nested cognitive abilities," Intelligence, Elsevier, vol. 75(C), pages 59-72.
    6. Jamshidian, Mortaza & Jalal, Siavash & Jansen, Camden, 2014. "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i06).
    7. Jun Li & Yao Yu, 2015. "A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 707-726, September.
    8. Ali, Saif & Arora, Gaurav, 2021. "Well-level Missingness Mechanisms in Administrative Groundwater Monitoring Data for Uttar Pradesh (UP), India, 2009-2018," 2021 Annual Meeting, August 1-3, Austin, Texas 314038, Agricultural and Applied Economics Association.
    9. Védaste Habamenshi & Dr. Thomas K Tarus, 2022. "Financial managers’ perceptions on firm characteristics and internet financial reporting disclosure among selected financial institutions in Rwanda," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(8), pages 716-724, August.
    10. Raquel Lourenço Carvalhal Monteiro & Valdecy Pereira & Helder Gomes Costa, 2020. "Dependence Analysis Between Childhood Social Indicators and Human Development Index Through Canonical Correlation Analysis," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 13(1), pages 337-362, February.
    11. Ke-Hai Yuan & Mortaza Jamshidian & Yutaka Kano, 2018. "Missing Data Mechanisms and Homogeneity of Means and Variances–Covariances," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 425-442, June.
    12. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    13. Serguei Rouzinov & André Berchtold, 2022. "Regression-Based Approach to Test Missing Data Mechanisms," Data, MDPI, vol. 7(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidian, Mortaza & Jalal, Siavash & Jansen, Camden, 2014. "MissMech: An R Package for Testing Homoscedasticity, Multivariate Normality, and Missing Completely at Random (MCAR)," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i06).
    2. Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
    3. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
    4. Chassan, Malika & Concordet, Didier, 2023. "How to test the missing data mechanism in a hidden Markov model," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    5. Erik Meijer & Arie Kapteyn & Tatiana Andreyeva, 2008. "Health Indexes and Retirement Modeling in International Comparisons," Working Papers 614, RAND Corporation.
    6. Jun Li & Yao Yu, 2015. "A Nonparametric Test of Missing Completely at Random for Incomplete Multivariate Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 707-726, September.
    7. Ke-Hai Yuan & Mortaza Jamshidian & Yutaka Kano, 2018. "Missing Data Mechanisms and Homogeneity of Means and Variances–Covariances," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 425-442, June.
    8. Xin-Yuan Song & Sik-Yum Lee, 2002. "Analysis of structural equation model with ignorable missing continuous and polytomous data," Psychometrika, Springer;The Psychometric Society, vol. 67(2), pages 261-288, June.
    9. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    10. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    11. Erik Meijer & Arie Kapteyn & Tatiana Andreyeva, 2008. "Health Indexes and Retirement Modeling in International Comparisons," Working Papers WR-614, RAND Corporation.
    12. Jamshidian, Mortaza & Schott, James R., 2007. "Testing equality of covariance matrices when data are incomplete," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4227-4239, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:75:y:2010:i:4:p:649-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.