IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v48y2014i6p3271-3288.html
   My bibliography  Save this article

Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling

Author

Listed:
  • Johan Oud
  • Manuel Voelkle

Abstract

In cross-national longitudinal studies it is often impossible to administer the same measurement instruments at the same occasions to all sample units in all participating countries. This quickly results in large quantities of missing data, due to (a) missing measurement instruments in some countries, (b) missing assessment waves within or across countries, (c) missing data for individual sample units. As compared to cross-sectional studies, the problem of missing values is further aggravated by the fact that missing values are always associated with different time intervals between repeated observations. In the past, this has often been dealt with by the use of phantom-variables, but this approach is limited to simple designs with few missing value patters. In the present paper we propose a new way to think of, and deal with, missing values in longitudinal studies. Instead of conceiving of a longitudinal study as a study with $$T$$ T discrete time points of which some are missing, we propose to conceive of a longitudinal study as a way to measure an underlying process that develops continuously over time, but is only observed at some selected discrete time points. This transforms the problem of missing values into a problem of unequal time intervals. After a quick introduction to the basic idea of continuous time modeling, we demonstrate how this approach provides a straightforward solution to missing measurement instruments in some countries, missing assessment waves within or across countries, and missing data for individual sample units. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
  • Handle: RePEc:spr:qualqt:v:48:y:2014:i:6:p:3271-3288
    DOI: 10.1007/s11135-013-9955-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-013-9955-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-013-9955-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William Meredith, 1964. "Notes on factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 177-185, June.
    2. William Meredith, 1993. "Measurement invariance, factor analysis and factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 525-543, December.
    3. Steven Boker & Michael Neale & Hermine Maes & Michael Wilde & Michael Spiegel & Timothy Brick & Jeffrey Spies & Ryne Estabrook & Sarah Kenny & Timothy Bates & Paras Mehta & John Fox, 2011. "OpenMx: An Open Source Extended Structural Equation Modeling Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 306-317, April.
    4. Lee, Jinkook & Zamarro, Gema, 2011. "Harmonization of Cross-National Studies of Aging to the Health and Retirement Study: Employment and Retirement Measures," Working Papers 861/4, RAND Corporation.
    5. Franco Peracchi, 2002. "The European Community Household Panel: A review," Empirical Economics, Springer, vol. 27(1), pages 63-90.
    6. Johan Oud & Robert Jansen, 2000. "Continuous time state space modeling of panel data by means of sem," Psychometrika, Springer;The Psychometric Society, vol. 65(2), pages 199-215, June.
    7. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John McArdle, 2011. "Longitudinal dynamic analyses of cognition in the health and retirement study panel," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 453-480, December.
    2. Hao Wu & Ryne Estabrook, 2016. "Identification of Confirmatory Factor Analysis Models of Different Levels of Invariance for Ordered Categorical Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1014-1045, December.
    3. Wilson, Christopher J. & Bowden, Stephen C. & Byrne, Linda K. & Joshua, Nicole R. & Marx, Wolfgang & Weiss, Lawrence G., 2023. "The cross-cultural generalizability of cognitive ability measures: A systematic literature review," Intelligence, Elsevier, vol. 98(C).
    4. Eldad Davidov & Stefan Thörner & Peter Schmidt & Stefanie Gosen & Carina Wolf, 2011. "Level and change of group-focused enmity in Germany: unconditional and conditional latent growth curve models with four panel waves," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(4), pages 481-500, December.
    5. Adam Carle, 2010. "Interpreting the results of studies using latent variable models to assess data quality: an empirical example using confirmatory factor analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(3), pages 483-497, April.
    6. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    7. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    8. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    9. Takahiro Hoshino & Hiroshi Kurata & Kazuo Shigemasu, 2006. "A Propensity Score Adjustment for Multiple Group Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 691-712, December.
    10. Guido Alessandri & Michele Vecchione & Brent Donnellan & John Tisak, 2013. "An Application of the LC-LSTM Framework to the Self-esteem Instability Case," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 769-792, October.
    11. Alexander Robitzsch, 2023. "Modeling Model Misspecification in Structural Equation Models," Stats, MDPI, vol. 6(2), pages 1-17, June.
    12. Jeffrey R. Harring, 2009. "A Nonlinear Mixed Effects Model for Latent Variables," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 293-318, September.
    13. Scholderer, Joachim & Grunert, Klaus G. & Brunso, Karen, 2005. "A procedure for eliminating additive bias from cross-cultural survey data," Journal of Business Research, Elsevier, vol. 58(1), pages 72-78, January.
    14. Jolynn Pek & R. Philip Chalmers & Bethany E. Kok & Diane Losardo, 2015. "Visualizing Confidence Bands for Semiparametrically Estimated Nonlinear Relations Among Latent Variables," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 402-423, August.
    15. Sy-Miin Chow & Lu Ou & Arridhana Ciptadi & Emily B. Prince & Dongjun You & Michael D. Hunter & James M. Rehg & Agata Rozga & Daniel S. Messinger, 2018. "Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 476-510, June.
    16. Roger Millsap, 2007. "Invariance in Measurement and Prediction Revisited," Psychometrika, Springer;The Psychometric Society, vol. 72(4), pages 461-473, December.
    17. Marc J. M. H. Delsing & Johan H. L. Oud, 2008. "Analyzing reciprocal relationships by means of the continuous‐time autoregressive latent trajectory model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 62(1), pages 58-82, February.
    18. Jeanne A. Teresi & Chun Wang & Marjorie Kleinman & Richard N. Jones & David J. Weiss, 2021. "Differential Item Functioning Analyses of the Patient-Reported Outcomes Measurement Information System (PROMIS®) Measures: Methods, Challenges, Advances, and Future Directions," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 674-711, September.
    19. Piia Seppälä & Saija Mauno & Taru Feldt & Jari Hakanen & Ulla Kinnunen & Asko Tolvanen & Wilmar Schaufeli, 2009. "The Construct Validity of the Utrecht Work Engagement Scale: Multisample and Longitudinal Evidence," Journal of Happiness Studies, Springer, vol. 10(4), pages 459-481, August.
    20. Sy-Miin Chow & Zhaohua Lu & Andrew Sherwood & Hongtu Zhu, 2016. "Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation–Maximization (SAEM) Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 81(1), pages 102-134, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:48:y:2014:i:6:p:3271-3288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.