IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i3p417-440.html
   My bibliography  Save this article

Assessing Item Fit for Unidimensional Item Response Theory Models Using Residuals from Estimated Item Response Functions

Author

Listed:
  • Shelby Haberman
  • Sandip Sinharay
  • Kyong Chon

Abstract

Residual analysis (e.g. Hambleton & Swaminathan, Item response theory: principles and applications, Kluwer Academic, Boston, 1985 ; Hambleton, Swaminathan, & Rogers, Fundamentals of item response theory, Sage, Newbury Park, 1991 ) is a popular method to assess fit of item response theory (IRT) models. We suggest a form of residual analysis that may be applied to assess item fit for unidimensional IRT models. The residual analysis consists of a comparison of the maximum-likelihood estimate of the item characteristic curve with an alternative ratio estimate of the item characteristic curve. The large sample distribution of the residual is proved to be standardized normal when the IRT model fits the data. We compare the performance of our suggested residual to the standardized residual of Hambleton et al. (Fundamentals of item response theory, Sage, Newbury Park, 1991 ) in a detailed simulation study. We then calculate our suggested residuals using data from an operational test. The residuals appear to be useful in assessing the item fit for unidimensional IRT models. Copyright The Psychometric Society 2013

Suggested Citation

  • Shelby Haberman & Sandip Sinharay & Kyong Chon, 2013. "Assessing Item Fit for Unidimensional Item Response Theory Models Using Residuals from Estimated Item Response Functions," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 417-440, July.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:3:p:417-440
    DOI: 10.1007/s11336-012-9305-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-012-9305-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-012-9305-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Paul Holland, 1990. "The Dutch Identity: A new tool for the study of item response models," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 5-18, March.
    4. J. C. Naylor & A. F. M. Smith, 1982. "Applications of a Method for the Efficient Computation of Posterior Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 214-225, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi-Hsuan Lee & Charles Lewis, 2021. "Monitoring Item Performance With CUSUM Statistics in Continuous Testing," Journal of Educational and Behavioral Statistics, , vol. 46(5), pages 611-648, October.
    2. Yang Liu & Ji Seung Yang & Alberto Maydeu-Olivares, 2019. "Restricted Recalibration of Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 529-553, June.
    3. Scott Monroe, 2021. "Testing Latent Variable Distribution Fit in IRT Using Posterior Residuals," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 374-398, June.
    4. Jochen Ranger & Kay Brauer, 2022. "On the Generalized S − X 2 –Test of Item Fit: Some Variants, Residuals, and a Graphical Visualization," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 202-230, April.
    5. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    6. Gerhard Tutz, 2022. "Item Response Thresholds Models: A General Class of Models for Varying Types of Items," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1238-1269, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hessen, 2012. "Fitting and Testing Conditional Multinormal Partial Credit Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 693-709, October.
    2. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    3. Paul Holland, 1990. "On the sampling theory roundations of item response theory models," Psychometrika, Springer;The Psychometric Society, vol. 55(4), pages 577-601, December.
    4. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    5. Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
    6. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    7. Robert Zwitser & Gunter Maris, 2015. "Conditional Statistical Inference with Multistage Testing Designs," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 65-84, March.
    8. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    9. Rabe-Hesketh, Sophia & Skrondal, Anders & Pickles, Andrew, 2005. "Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects," Journal of Econometrics, Elsevier, vol. 128(2), pages 301-323, October.
    10. Paul A. Jewsbury & Peter W. van Rijn, 2020. "IRT and MIRT Models for Item Parameter Estimation With Multidimensional Multistage Tests," Journal of Educational and Behavioral Statistics, , vol. 45(4), pages 383-402, August.
    11. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    12. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    13. Sara Fernandes & Guillaume Fond & Xavier Zendjidjian & Pierre Michel & Karine Baumstarck & Christophe Lançon & Ludovic Samalin & Pierre-Michel Llorca & Magali Coldefy & Pascal Auquier & Laurent Boyer , 2022. "Development and Calibration of the PREMIUM Item Bank for Measuring Respect and Dignity for Patients with Severe Mental Illness," Post-Print hal-03649277, HAL.
    14. Felix Zimmer & Clemens Draxler & Rudolf Debelak, 2023. "Power Analysis for the Wald, LR, Score, and Gradient Tests in a Marginal Maximum Likelihood Framework: Applications in IRT," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1249-1298, December.
    15. Silvana Bortolotti & Rafael Tezza & Dalton Andrade & Antonio Bornia & Afonso Sousa Júnior, 2013. "Relevance and advantages of using the item response theory," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2341-2360, June.
    16. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.
    17. Li C. Liu & Donald Hedeker, 2006. "A Mixed-Effects Regression Model for Longitudinal Multivariate Ordinal Data," Biometrics, The International Biometric Society, vol. 62(1), pages 261-268, March.
    18. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.
    19. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    20. Alan Agresti, 1995. "Logit Models and Related Quasi-Symmetric Log-Linear Models for Comparing Responses to Similar Items in a Survey," Sociological Methods & Research, , vol. 24(1), pages 68-95, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:3:p:417-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.