IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i2d10.1007_s11336-021-09819-5.html
   My bibliography  Save this article

Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model

Author

Listed:
  • Inhan Kang

    (The Ohio State University)

  • Paul Boeck

    (The Ohio State University)

  • Roger Ratcliff

    (The Ohio State University)

Abstract

In this paper, we propose a model-based method to study conditional dependence between response accuracy and response time (RT) with the diffusion IRT model (Tuerlinckx and De Boeck in Psychometrika 70(4):629–650, 2005, https://doi.org/10.1007/s11336-000-0810-3 ; van der Maas et al. in Psychol Rev 118(2):339–356, 2011, https://doi.org/10.1080/20445911.2011.454498 ). We extend the earlier diffusion IRT model by introducing variability across persons and items in cognitive capacity (drift rate in the evidence accumulation process) and variability in the starting point of the decision processes. We show that the extended model can explain the behavioral patterns of conditional dependency found in the previous studies in psychometrics. Variability in cognitive capacity can predict positive and negative conditional dependency and their interaction with the item difficulty. Variability in starting point can account for the early changes in the response accuracy as a function of RT given the person and item effects. By the combination of the two variability components, the extended model can produce the curvilinear conditional accuracy functions that have been observed in psychometric data. We also provide a simulation study to validate the parameter recovery of the proposed model and present two empirical applications to show how to implement the model to study conditional dependency underlying data response accuracy and RTs.

Suggested Citation

  • Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09819-5
    DOI: 10.1007/s11336-021-09819-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09819-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09819-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis Tuerlinckx & Paul Boeck, 2005. "Two interpretations of the discrimination parameter," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 629-650, December.
    2. Molenaar, Dylan & Tuerlinckx, Francis & van der Maas, Han L. J., 2015. "Fitting Diffusion Item Response Theory Models for Responses and Response Times Using the R Package diffIRT," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i04).
    3. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    4. Wim Linden & Cees Glas, 2010. "Statistical Tests of Conditional Independence Between Responses and/or Response Times on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 120-139, March.
    5. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    6. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    7. Chen, Haiqin & De Boeck, Paul & Grady, Matthew & Yang, Chien-Lin & Waldschmidt, David, 2018. "Curvilinear dependency of response accuracy on response time in cognitive tests," Intelligence, Elsevier, vol. 69(C), pages 16-23.
    8. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    9. Mervyn Stone, 1960. "Models for choice-reaction time," Psychometrika, Springer;The Psychometric Society, vol. 25(3), pages 251-260, September.
    10. Gunter Maris & Han Maas, 2012. "Speed-Accuracy Response Models: Scoring Rules based on Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 615-633, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    2. Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inhan Kang & Minjeong Jeon & Ivailo Partchev, 2023. "A Latent Space Diffusion Item Response Theory Model to Explore Conditional Dependence between Responses and Response Times," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 830-864, September.
    2. Kang, Inhan & De Boeck, Paul & Partchev, Ivailo, 2022. "A randomness perspective on intelligence processes," Intelligence, Elsevier, vol. 91(C).
    3. Inhan Kang & Dylan Molenaar & Roger Ratcliff, 2023. "A Modeling Framework to Examine Psychological Processes Underlying Ordinal Responses and Response Times of Psychometric Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 940-974, September.
    4. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    5. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    6. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    7. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    8. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Matthew Naveiras & Si On Yoon & Aaron Benjamin, 2023. "Incorporating Functional Response Time Effects into a Signal Detection Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1056-1086, September.
    9. Sandip Sinharay & Peter W. van Rijn, 2020. "Assessing Fit of the Lognormal Model for Response Times," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 534-568, October.
    10. Jochen Ranger & Jörg-Tobias Kuhn, 2018. "Estimating Diffusion-Based Item Response Theory Models: Exploring the Robustness of Three Old and Two New Estimators," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 635-662, December.
    11. Jinxin Guo & Xin Xu & Zhiliang Ying & Susu Zhang, 2022. "Modeling Not-Reached Items in Timed Tests: A Response Time Censoring Approach," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 835-867, September.
    12. Minjeong Jeon & Paul Boeck & Jevan Luo & Xiangrui Li & Zhong-Lin Lu, 2021. "Modeling Within-Item Dependencies in Parallel Data on Test Responses and Brain Activation," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 239-271, March.
    13. Maria Bolsinova & Jesper Tijmstra, 2019. "Modeling Differences Between Response Times of Correct and Incorrect Responses," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 1018-1046, December.
    14. Bunji, Kyosuke & Okada, Kensuke, 2019. "Item Response and Response Time Model for Personality Assessment via Linear Ballistic Accumulation," OSF Preprints knuy7, Center for Open Science.
    15. Th'eo Durandard & Matteo Camboni, 2024. "Comparative Statics for Optimal Stopping Problems in Nonstationary Environments," Papers 2402.06999, arXiv.org, revised Jul 2024.
    16. Steffi Pohl & Esther Ulitzsch & Matthias Davier, 2019. "Using Response Times to Model Not-Reached Items due to Time Limits," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 892-920, September.
    17. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    18. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    19. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    20. Frederik Coomans & Abe Hofman & Matthieu Brinkhuis & Han L J van der Maas & Gunter Maris, 2016. "Distinguishing Fast and Slow Processes in Accuracy - Response Time Data," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09819-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.