IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i3d10.1007_s11336-016-9496-y.html
   My bibliography  Save this article

Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning

Author

Listed:
  • Sun-Joo Cho

    (Vanderbilt University’s Peabody College)

  • Amanda P. Goodwin

    (Vanderbilt University’s Peabody College)

Abstract

When word learning is supported by instruction in experimental studies for adolescents, word knowledge outcomes tend to be collected from complex data structure, such as multiple aspects of word knowledge, multilevel reader data, multilevel item data, longitudinal design, and multiple groups. This study illustrates how generalized linear mixed models can be used to measure and explain word learning for data having such complexity. Results from this application provide deeper understanding of word knowledge than could be attained from simpler models and show that word knowledge is multidimensional and depends on word characteristics and instructional contexts.

Suggested Citation

  • Sun-Joo Cho & Amanda P. Goodwin, 2017. "Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 846-870, September.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-016-9496-y
    DOI: 10.1007/s11336-016-9496-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9496-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9496-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun-Joo Cho & Jennifer Gilbert & Amanda Goodwin, 2013. "Explanatory Multidimensional Multilevel Random Item Response Model: An Application to Simultaneous Investigation of Word and Person Contributions to Multidimensional Lexical Representations," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 830-855, October.
    2. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2011. "Assessment of School Performance Through a Multilevel Latent Markov Rasch Model," Journal of Educational and Behavioral Statistics, , vol. 36(4), pages 491-522, August.
    3. Sandip Sinharay & Matthew S. Johnson & David M. Williamson, 2003. "Calibrating Item Families and Summarizing the Results Using Family Expected Response Functions," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 295-313, December.
    4. Jorge González B. & Paul De Boeck & Francis Tuerlinckx, 2014. "Linear mixed modelling for data from a double mixed factorial design with covariates: a case-study on semantic categorization response times," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 289-302, February.
    5. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    6. Susan Embretson, 1991. "A multidimensional latent trait model for measuring learning and change," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 495-515, September.
    7. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    8. Lori Markson & Paul Bloom, 1997. "Evidence against a dedicated system for word learning in children," Nature, Nature, vol. 385(6619), pages 813-815, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quinn N. Lathrop & Ying Cheng, 2017. "Item Cloning Variation and the Impact on the Parameters of Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 245-263, March.
    2. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    3. Yang Liu & Xiaojing Wang, 2020. "Bayesian Nonparametric Monotone Regression of Dynamic Latent Traits in Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 274-296, June.
    4. Susan Embretson, 1999. "Generating items during testing: Psychometric issues and models," Psychometrika, Springer;The Psychometric Society, vol. 64(4), pages 407-433, December.
    5. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    6. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    7. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    8. Giorgio Eduardo Montanari & Marco Doretti & Maria Francesca Marino, 2022. "Model-based two-way clustering of second-level units in ordinal multilevel latent Markov models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 457-485, June.
    9. Montanari, Giorgio E. & Doretti, Marco & Bartolucci, Francesco, 2017. "A multilevel latent Markov model for the evaluation of nursing homes' performance," MPRA Paper 80691, University Library of Munich, Germany.
    10. Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
    11. Joshua B. Gilbert & James S. Kim & Luke W. Miratrix, 2023. "Modeling Item-Level Heterogeneous Treatment Effects With the Explanatory Item Response Model: Leveraging Large-Scale Online Assessments to Pinpoint the Impact of Educational Interventions," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 889-913, December.
    12. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    13. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.
    14. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    15. Shiyu Wang & Yan Yang & Steven Andrew Culpepper & Jeffrey A. Douglas, 2018. "Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model With Covariates," Journal of Educational and Behavioral Statistics, , vol. 43(1), pages 57-87, February.
    16. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    17. Michela Gnaldi, 2017. "A multidimensional IRT approach for dimensionality assessment of standardised students’ tests in mathematics," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1167-1182, May.
    18. Francesca Bassi & Bruno Scarpa, 2015. "Latent class modeling of markers of day-specific fertility," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 263-276, August.
    19. Sebastian Tempelmann & Juliane Kaminski & Michael Tomasello, 2014. "Do Domestic Dogs Learn Words Based on Humans’ Referential Behaviour?," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-8, March.
    20. Ruijin Lu & Tonja R. Nansel & Zhen Chen, 2023. "A Perception-Augmented Hidden Markov Model for Parent–Child Relations in Families of Youth with Type 1 Diabetes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 288-308, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:3:d:10.1007_s11336-016-9496-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.