IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v28y2003i4p295-313.html
   My bibliography  Save this article

Calibrating Item Families and Summarizing the Results Using Family Expected Response Functions

Author

Listed:
  • Sandip Sinharay
  • Matthew S. Johnson
  • David M. Williamson

Abstract

Item families, which are groups of related items, are becoming increasingly popular in complex educational assessments. For example, in automatic item generation (AIG) systems, a test may consist of multiple items generated from each of a number of item models. Item calibration or scoring for such an assessment requires fitting models that can take into account the dependence structure inherent among the items that belong to the same item family. Glas and van der Linden (2001) suggest a Bayesian hierarchical model to analyze data involving item families with multiple-choice items. We fit the model using the Markov Chain Monte Carlo (MCMC) algorithm, introduce the family expected response function (FERF) as a way to summarize the probability of a correct response to an item randomly generated from an item family, and suggest a way to estimate the FERFs. This work is thus a step towards creating a tool that can save significant amount of resources in educational testing, by allowing proper analysis and summarization of data from tests involving item families.

Suggested Citation

  • Sandip Sinharay & Matthew S. Johnson & David M. Williamson, 2003. "Calibrating Item Families and Summarizing the Results Using Family Expected Response Functions," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 295-313, December.
  • Handle: RePEc:sae:jedbes:v:28:y:2003:i:4:p:295-313
    DOI: 10.3102/10769986028004295
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/10769986028004295
    Download Restriction: no

    File URL: https://libkey.io/10.3102/10769986028004295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun-Joo Cho & Amanda P. Goodwin, 2017. "Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 846-870, September.
    2. Quinn N. Lathrop & Ying Cheng, 2017. "Item Cloning Variation and the Impact on the Parameters of Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 245-263, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:28:y:2003:i:4:p:295-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.