IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i3p601-607.html
   My bibliography  Save this article

Advances in Modeling Model Discrepancy: Comment on Wu and Browne (2015)

Author

Listed:
  • Robert MacCallum
  • Anthony O’Hagan

Abstract

Wu and Browne (Psychometrika, 79, 2015 ) have proposed an innovative approach to modeling discrepancy between a covariance structure model and the population that the model is intended to represent. Their contribution is related to ongoing developments in the field of Uncertainty Quantification (UQ) on modeling and quantifying effects of model discrepancy. We provide an overview of basic principles of UQ and some relevant developments and we examine the Wu–Browne work in that context. We view the Wu–Browne contribution as a seminal development providing a foundation for further work on the critical problem of model discrepancy in statistical modeling in psychological research. Copyright The Psychometric Society 2015

Suggested Citation

  • Robert MacCallum & Anthony O’Hagan, 2015. "Advances in Modeling Model Discrepancy: Comment on Wu and Browne (2015)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 601-607, September.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:3:p:601-607
    DOI: 10.1007/s11336-015-9452-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-015-9452-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-015-9452-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Wu & Michael Browne, 2015. "Quantifying Adventitious Error in a Covariance Structure as a Random Effect," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 571-600, September.
    2. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    3. Ledyard Tucker & Raymond Koopman & Robert Linn, 1969. "Evaluation of factor analytic research procedures by means of simulated correlation matrices," Psychometrika, Springer;The Psychometric Society, vol. 34(4), pages 421-459, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.
    2. Paul Boeck & Michael L. DeKay & Jolynn Pek, 2024. "Adventitious Error and Its Implications for Testing Relations Between Variables and for Composite Measurement Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 1055-1073, September.
    3. Hao Wu & Michael Browne, 2015. "Quantifying Adventitious Error in a Covariance Structure as a Random Effect," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 571-600, September.
    4. Keke Lai, 2019. "Creating Misspecified Models in Moment Structure Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 781-801, September.
    5. Alexander Robitzsch, 2022. "Comparing the Robustness of the Structural after Measurement (SAM) Approach to Structural Equation Modeling (SEM) against Local Model Misspecifications with Alternative Estimation Approaches," Stats, MDPI, vol. 5(3), pages 1-42, July.
    6. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    7. Xiaoyu Xiong & Benjamin D. Youngman & Theodoros Economou, 2021. "Data fusion with Gaussian processes for estimation of environmental hazard events," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    8. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    9. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    10. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    11. Edward Boone & Jan Hannig & Ryad Ghanam & Sujit Ghosh & Fabrizio Ruggeri & Serge Prudhomme, 2022. "Model Validation of a Single Degree-of-Freedom Oscillator: A Case Study," Stats, MDPI, vol. 5(4), pages 1-17, November.
    12. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    13. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    14. Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
    15. Antony M. Overstall & David C. Woods, 2016. "Multivariate emulation of computer simulators: model selection and diagnostics with application to a humanitarian relief model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 483-505, August.
    16. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).
    17. Andrew White & Malachi Tolman & Howard D Thames & Hubert Rodney Withers & Kathy A Mason & Mark K Transtrum, 2016. "The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    18. MacKenzie, Cameron A. & Hu, Chao, 2019. "Decision making under uncertainty for design of resilient engineered systems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    19. Huang, Xucong & Peng, Zhaoqin & Tang, Diyin & Chen, Juan & Zio, Enrico & Zheng, Zaiping, 2024. "A physics-informed autoencoder for system health state assessment based on energy-oriented system performance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Pasanisi, Alberto & Keller, Merlin & Parent, Eric, 2012. "Estimation of a quantity of interest in uncertainty analysis: Some help from Bayesian decision theory," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 93-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:3:p:601-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.