IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i4p710-724.html
   My bibliography  Save this article

Assessing Parameter Invariance in the BLIM: Bipartition Models

Author

Listed:
  • Debora Chiusole
  • Luca Stefanutti
  • Pasquale Anselmi
  • Egidio Robusto

Abstract

In knowledge space theory, the knowledge state of a student is the set of all problems he is capable of solving in a specific knowledge domain and a knowledge structure is the collection of knowledge states. The basic local independence model (BLIM) is a probabilistic model for knowledge structures. The BLIM assumes a probability distribution on the knowledge states and a lucky guess and a careless error probability for each problem. A key assumption of the BLIM is that the lucky guess and careless error probabilities do not depend on knowledge states (invariance assumption). This article proposes a method for testing the violations of this specific assumption. The proposed method was assessed in a simulation study and in an empirical application. The results show that (1) the invariance assumption might be violated by the empirical data even when the model’s fit is very good, and (2) the proposed method may prove to be a promising tool to detect invariance violations of the BLIM. Copyright The Psychometric Society 2013

Suggested Citation

  • Debora Chiusole & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2013. "Assessing Parameter Invariance in the BLIM: Bipartition Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 710-724, October.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:4:p:710-724
    DOI: 10.1007/s11336-013-9325-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9325-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9325-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Curtis Tatsuoka, 2002. "Data analytic methods for latent partially ordered classification models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 337-350, July.
    2. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    3. Erling Andersen, 1973. "A goodness of fit test for the rasch model," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 123-140, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Stefanutti & Debora Chiusole & Pasquale Anselmi & Andrea Spoto, 2020. "Extending the Basic Local Independence Model to Polytomous Data," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 684-715, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew S. Johnson & Sandip Sinharay, 2020. "The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 5-31, February.
    2. Hans-Friedrich Köhn & Chia-Yi Chiu, 2017. "A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 112-132, March.
    3. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    4. Ping Chen & Tao Xin & Chun Wang & Hua-Hua Chang, 2012. "Online Calibration Methods for the DINA Model with Independent Attributes in CD-CAT," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 201-222, April.
    5. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    6. Pasquale Anselmi & Egidio Robusto & Luca Stefanutti & Debora Chiusole, 2016. "An Upgrading Procedure for Adaptive Assessment of Knowledge," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 461-482, June.
    7. Meng-Ta Chung & Shui-Lien Chen, 2021. "A Deterministic Learning Algorithm Estimating the Q-Matrix for Cognitive Diagnosis Models," Mathematics, MDPI, vol. 9(23), pages 1-11, November.
    8. Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
    9. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    10. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    11. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    12. Hong-Yun Liu & Xiao-Feng You & Wen-Yi Wang & Shu-Liang Ding & Hua-Hua Chang, 2013. "The Development of Computerized Adaptive Testing with Cognitive Diagnosis for an English Achievement Test in China," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 152-172, July.
    13. Wenyi Wang & Lihong Song & Teng Wang & Peng Gao & Jian Xiong, 2020. "A Note on the Relationship of the Shannon Entropy Procedure and the Jensen–Shannon Divergence in Cognitive Diagnostic Computerized Adaptive Testing," SAGE Open, , vol. 10(1), pages 21582440198, January.
    14. Yuqi Gu & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2018. "Hypothesis Testing of the Q-matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 515-537, September.
    15. Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
    16. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    17. Jingchen Liu & Zhiliang Ying & Stephanie Zhang, 2015. "A Rate Function Approach to Computerized Adaptive Testing for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 468-490, June.
    18. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    19. Chen, Yunxiao & Li, Xiaoou & Liu, Jingchen & Ying, Zhiliang, 2017. "Regularized latent class analysis with application in cognitive diagnosis," LSE Research Online Documents on Economics 103182, London School of Economics and Political Science, LSE Library.
    20. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen & Jeffrey Douglas, 2018. "Bayesian Estimation of the DINA Q matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 89-108, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:4:p:710-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.