IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i3p441-463.html
   My bibliography  Save this article

On the Likelihood Ratio Tests in Bivariate ACDE Models

Author

Listed:
  • Hao Wu
  • Michael Neale

Abstract

The ACE and ADE models have been heavily exploited in twin studies to identify the genetic and environmental components in phenotypes. However, the validity of the likelihood ratio test (LRT) of the existence of a variance component, a key step in the use of such models, has been doubted because the true values of the parameters lie on the boundary of the parameter space of the alternative model for such tests, violating a regularity condition required for a LRT (e.g., Carey in Behav. Genet. 35:653–665, 2005 ; Visscher in Twin Res. Hum. Genet. 9:490–495, 2006 ). Dominicus, Skrondal, Gjessing, Pedersen, and Palmgren (Behav. Genet. 36:331–340, 2006 ) solve the problem of testing univariate components in ACDE models. Our current work as presented in this paper resolves the issue of LRTs in bivariate ACDE models by exploiting the theoretical frameworks of inequality constrained LRTs based on cone approximations. Our derivation shows that the asymptotic sampling distribution of the test statistic for testing a single bivariate component in an ACE or ADE model is a mixture of χ 2 distributions of degrees of freedom (dfs) ranging from 0 to 3, and that for testing both the A and C (or D) components is one of dfs ranging from 0 to 6. These correct distributions are stochastically smaller than the χ 2 distributions in traditional LRTs and therefore LRTs based on these distributions are more powerful than those used naively. Formulas for calculating the weights are derived and the sampling distributions are confirmed by simulation studies. Several invariance properties for normal data (at most) missing by person are also proved. Potential generalizations of this work are also discussed. Copyright The Psychometric Society 2013

Suggested Citation

  • Hao Wu & Michael Neale, 2013. "On the Likelihood Ratio Tests in Bivariate ACDE Models," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 441-463, July.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:3:p:441-463
    DOI: 10.1007/s11336-012-9304-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-012-9304-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-012-9304-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Boker & Michael Neale & Hermine Maes & Michael Wilde & Michael Spiegel & Timothy Brick & Jeffrey Spies & Ryne Estabrook & Sarah Kenny & Timothy Bates & Paras Mehta & John Fox, 2011. "OpenMx: An Open Source Extended Structural Equation Modeling Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 306-317, April.
    2. Satoshi Kuriki & Akimichi Takemura, 2000. "Some Geometry of the Cone of Nonnegative Definite Matrices and Weights of Associated X 2 Distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(1), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yunxiao & Moustaki, Irini & Zhang, H, 2020. "A note on likelihood ratio tests for models with latent variables," LSE Research Online Documents on Economics 107490, London School of Economics and Political Science, LSE Library.
    2. Hao Wu, 2016. "A Note on the Identifiability of Fixed-Effect 3PL Models," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1093-1097, December.
    3. Hao Wu & Ryne Estabrook, 2016. "Identification of Confirmatory Factor Analysis Models of Different Levels of Invariance for Ordered Categorical Outcomes," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1014-1045, December.
    4. Yunxiao Chen & Irini Moustaki & Haoran Zhang, 2020. "A Note on Likelihood Ratio Tests for Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 996-1012, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johan Oud & Manuel Voelkle, 2014. "Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3271-3288, November.
    2. Kato, Naohiro & Kuriki, Satoshi, 2013. "Likelihood ratio tests for positivity in polynomial regressions," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 334-346.
    3. Nancy, Jane Y. & Khanna, Nehemiah H. & Arputharaj, Kannan, 2017. "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 63-79.
    4. D V M Bishop & Mervyn J Hardiman & Johanna G Barry, 2012. "Auditory Deficit as a Consequence Rather than Endophenotype of Specific Language Impairment: Electrophysiological Evidence," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-11, May.
    5. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    6. Kan, Kees-Jan & van der Maas, Han L.J. & Levine, Stephen Z., 2019. "Extending psychometric network analysis: Empirical evidence against g in favor of mutualism?," Intelligence, Elsevier, vol. 73(C), pages 52-62.
    7. van de Weijer, Margot P. & de Vries, Lianne P. & Pelt, Dirk H.M. & Ligthart, Lannie & Willemsen, Gonneke & Boomsma, Dorret I. & de Geus, Eco & Bartels, Meike, 2022. "Self-rated health when population health is challenged by the COVID-19 pandemic; a longitudinal study," Social Science & Medicine, Elsevier, vol. 306(C).
    8. Sy-Miin Chow & Guangjian Zhang, 2013. "Nonlinear Regime-Switching State-Space (RSSS) Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 740-768, October.
    9. Angelo Moretti & Natalie Shlomo & Joseph W. Sakshaug, 2020. "Multivariate Small Area Estimation of Multidimensional Latent Economic Well‐being Indicators," International Statistical Review, International Statistical Institute, vol. 88(1), pages 1-28, April.
    10. Alexander Robitzsch, 2023. "Modeling Model Misspecification in Structural Equation Models," Stats, MDPI, vol. 6(2), pages 1-17, June.
    11. Zheng, Yao & Rijsdijk, Frühling & Arden, Rosalind, 2018. "Differential environmental influences on the development of cognitive abilities during childhood," Intelligence, Elsevier, vol. 66(C), pages 72-78.
    12. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    13. Ken B Hanscombe & Maciej Trzaskowski & Claire M A Haworth & Oliver S P Davis & Philip S Dale & Robert Plomin, 2012. "Socioeconomic Status (SES) and Children's Intelligence (IQ): In a UK-Representative Sample SES Moderates the Environmental, Not Genetic, Effect on IQ," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
    14. Yongliang Deng & Haolun Guo & Miaomiao Meng & Ying Zhang & Shuangshuang Pei, 2020. "Exploring the Effects of Safety Climate on Worker’s Safety Behavior in Subway Operation," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    15. Chenggang Wang, 2022. "Green Technology Innovation, Energy Consumption Structure and Sustainable Improvement of Enterprise Performance," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    16. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    17. Vijaya Sundararajan & Ou Yang & Jongsay Yong, 2023. "Socioeconomic status and access to care in a universal healthcare system: The case of acute myocardial infarction in Australia," Melbourne Institute Working Paper Series wp2023n10, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    18. Klaus Holst & Esben Budtz-Jørgensen, 2013. "Linear latent variable models: the lava-package," Computational Statistics, Springer, vol. 28(4), pages 1385-1452, August.
    19. Barr, Peter B. & Salvatore, Jessica E. & Maes, Hermine & Aliev, Fazil & Latvala, Antti & Viken, Richard & Rose, Richard J. & Kaprio, Jaakko & Dick, Danielle M., 2016. "Education and alcohol use: A study of gene-environment interaction in young adulthood," Social Science & Medicine, Elsevier, vol. 162(C), pages 158-167.
    20. Steven F. Lehrer & Weili Ding, 2017. "Are genetic markers of interest for economic research?," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 6(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:3:p:441-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.