IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v68y2003i4p551-556.html
   My bibliography  Save this article

From eye movement to cognition: Toward a general framework of inference comment on Liechty et al., 2003

Author

Listed:
  • Gary Feng

Abstract

No abstract is available for this item.

Suggested Citation

  • Gary Feng, 2003. "From eye movement to cognition: Toward a general framework of inference comment on Liechty et al., 2003," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 551-556, December.
  • Handle: RePEc:spr:psycho:v:68:y:2003:i:4:p:551-556
    DOI: 10.1007/BF02295610
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02295610
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02295610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Liechty & Rik Pieters & Michel Wedel, 2003. "Global and local covert visual attention: Evidence from a bayesian hidden markov model," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 519-541, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    2. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    3. Sam Hui & Eric Bradlow, 2012. "Bayesian multi-resolution spatial analysis with applications to marketing," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 419-452, December.
    4. Krucien, Nicolas & Ryan, Mandy & Hermens, Frouke, 2017. "Visual attention in multi-attributes choices: What can eye-tracking tell us?," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 251-267.
    5. Savannah Wei Shi & Michel Wedel & F. G. M. (Rik) Pieters, 2013. "Information Acquisition During Online Decision Making: A Model-Based Exploration Using Eye-Tracking Data," Management Science, INFORMS, vol. 59(5), pages 1009-1026, May.
    6. Berna Haktanirlar Ulutas & N. Fırat Özkan & Rafał Michalski, 2020. "Application of hidden Markov models to eye tracking data analysis of visual quality inspection operations," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 761-777, June.
    7. Yegoryan, Narine & Guhl, Daniel & Klapper, Daniel, 2018. "Inferring Attribute Non-Attendance Using Eye Tracking in Choice-Based Conjoint Analysis," Rationality and Competition Discussion Paper Series 111, CRC TRR 190 Rationality and Competition.
    8. Lemmens, A. & Croux, C. & Stremersch, S., 2012. "Dynamics in international market segmentation of new product growth," Other publications TiSEM 306086bd-670f-48d2-97d1-3, Tilburg University, School of Economics and Management.
    9. Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
    10. Jerzy Grobelny & Rafal Michalski, 2017. "Applying hidden Markov models to visual activity analysis for simple digital control panel operations," WORking papers in Management Science (WORMS) WORMS/17/06, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    11. Ralf van der Lans & Rik Pieters & Michel Wedel, 2008. "—Competitive Brand Salience," Marketing Science, INFORMS, vol. 27(5), pages 922-931, 09-10.
    12. Amy Wenxuan Ding & Shibo Li & Patrali Chatterjee, 2015. "Learning User Real-Time Intent for Optimal Dynamic Web Page Transformation," Information Systems Research, INFORMS, vol. 26(2), pages 339-359, June.
    13. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    14. Amirali Kani & Wayne S. DeSarbo & Duncan K. H. Fong, 2018. "A Factorial Hidden Markov Model for the Analysis of Temporal Change in Choice Models," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(3), pages 162-177, December.
    15. Qin Zeng & Yun Chen & Xiazhong Zheng & Shiyu He & Donghui Li & Benwu Nie, 2023. "Optimization of Underground Cavern Sign Group Layout Using Eye-Tracking Technology," Sustainability, MDPI, vol. 15(16), pages 1-32, August.
    16. Michel Wedel & Rik Pieters & Ralf Lans, 2023. "Modeling Eye Movements During Decision Making: A Review," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 697-729, June.
    17. Jerzy Grobelny & Rafal Michalski, 2020. "Investigating human visual behavior by hidden Markov models in the design of marketing information," WORking papers in Management Science (WORMS) WORMS/20/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    18. Erik Reichle & Jessica Nelson, 2003. "Local vs. global covert visual attention: Are two states necessary? Comment on Liechty et al., 2003," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 543-549, December.
    19. LouAnne Boyd & Vincent Berardi & Deanna Hughes & Franceli Cibrian & Jazette Johnson & Viseth Sean & Eliza DelPizzo-Cheng & Brandon Mackin & Ayra Tusneem & Riya Mody & Sara Jones & Karen Lotich, 2022. "Manipulating image luminance to improve eye gaze and verbal behavior in autistic children," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    20. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:68:y:2003:i:4:p:551-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.