IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v64y2018i6p2473-2495.html
   My bibliography  Save this article

Personal and Social Usage: The Origins of Active Customers and Ways to Keep Them Engaged

Author

Listed:
  • Clarence Lee

    (Samuel Curtis Johnson Graduate School of Management, Cornell SC Johnson College of Business, Cornell University, Ithaca, New York 14853)

  • Elie Ofek

    (Harvard Business School, Boston, Massachusetts 02163)

  • Thomas J. Steenburgh

    (Darden School of Business, University of Virginia, Charlottesville, Virginia 22903)

Abstract

We study how digital service firms can develop an active customer base, focusing on two questions. First, how does the way that customers use the service postadoption to meet their own needs (personal usage) and to interact with one another (social usage) vary across customer acquisition methods? Second, how do firm-to-customer and customer-to-customer communications promote different types of usage? We study these questions using two data sets and by developing a multivariate hierarchical Poisson hidden Markov model (HMM), which fits the data significantly better than univariate and latent class approaches. We indeed find that postadoption behavior varies depending on customer acquisition method and dynamic states. At the total usage level, in one context (an annotation and note-taking service), customers who heard about the service through search and mass-invite exhibited significantly higher usage compared to those who joined through word of mouth (WOM), whereas in another context (a cloud-based file storage service), customers who joined through WOM referrals tended to exhibit higher usage. Yet, examining how routes of adoption relate to specific types of behavior, personal versus social usages, reveals a more nuanced picture. Furthermore, in both contexts, communications postadoption influenced engagement, albeit in different ways. Firm-to-customer communications, through company posts to Twitter and blog entries, had varying effects on customer behavior and in some cases led to lower personal and/or social usage; however, customer-to-customer communications tended to increase personal-use engagement across latent states and in both data sets. The findings suggest that firms offering digital services should pay attention to how the mode of customer acquisition is related to subsequent usage intensity, accounting for both personal and social activity, and encourage customers to interact with each other postadoption.

Suggested Citation

  • Clarence Lee & Elie Ofek & Thomas J. Steenburgh, 2018. "Personal and Social Usage: The Origins of Active Customers and Ways to Keep Them Engaged," Management Science, INFORMS, vol. 64(6), pages 2473-2495, June.
  • Handle: RePEc:inm:ormnsc:v:64:y:2018:i:6:p:2473-2495
    DOI: 10.287/mnsc.2017.2754
    as

    Download full text from publisher

    File URL: https://doi.org/10.287/mnsc.2017.2754
    Download Restriction: no

    File URL: https://libkey.io/10.287/mnsc.2017.2754?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
    2. Friestad, Marian & Wright, Peter, 1994. "The Persuasion Knowledge Model: How People Cope with Persuasion Attempts," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 21(1), pages 1-31, June.
    3. John Liechty & Rik Pieters & Michel Wedel, 2003. "Global and local covert visual attention: Evidence from a bayesian hidden markov model," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 519-541, December.
    4. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    5. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    6. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    7. Erika Spissu & Abdul Pinjari & Chandra Bhat & Ram Pendyala & Kay Axhausen, 2009. "An analysis of weekly out-of-home discretionary activity participation and time-use behavior," Transportation, Springer, vol. 36(5), pages 483-510, September.
    8. Yan Huang & Param Vir Singh & Anindya Ghose, 2015. "A Structural Model of Employee Behavioral Dynamics in Enterprise Social Media," Management Science, INFORMS, vol. 61(12), pages 2825-2844, December.
    9. David A. Schweidel & Young-Hoon Park & Zainab Jamal, 2014. "A Multiactivity Latent Attrition Model for Customer Base Analysis," Marketing Science, INFORMS, vol. 33(2), pages 273-286, March.
    10. Daniel Kahneman & Jack L. Knetsch & Richard H. Thaler, 1991. "Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 193-206, Winter.
    11. Paulo Albuquerque & Polykarpos Pavlidis & Udi Chatow & Kay-Yut Chen & Zainab Jamal, 2012. "Evaluating Promotional Activities in an Online Two-Sided Market of User-Generated Content," Marketing Science, INFORMS, vol. 31(3), pages 406-432, May.
    12. Sinan Aral & Dylan Walker, 2011. "Creating Social Contagion Through Viral Product Design: A Randomized Trial of Peer Influence in Networks," Management Science, INFORMS, vol. 57(9), pages 1623-1639, February.
    13. Uncles, Mark D. & East, Robert & Lomax, Wendy, 2013. "Good customers: The value of customers by mode of acquisition," Australasian marketing journal, Elsevier, vol. 21(2), pages 119-125.
    14. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    15. Song Yao & Carl F. Mela, 2011. "A Dynamic Model of Sponsored Search Advertising," Marketing Science, INFORMS, vol. 30(3), pages 447-468, 05-06.
    16. Tat Y. Chan & Chunhua Wu & Ying Xie, 2011. "Measuring the Lifetime Value of Customers Acquired from Google Search Advertising," Marketing Science, INFORMS, vol. 30(5), pages 837-850, September.
    17. Garrett P. Sonnier & Leigh McAlister & Oliver J. Rutz, 2011. "A Dynamic Model of the Effect of Online Communications on Firm Sales," Marketing Science, INFORMS, vol. 30(4), pages 702-716, July.
    18. Venkatesh, Viswanath & Morris, Michael G. & Ackerman, Phillip L., 2000. "A Longitudinal Field Investigation of Gender Differences in Individual Technology Adoption Decision-Making Processes," Organizational Behavior and Human Decision Processes, Elsevier, vol. 83(1), pages 33-60, September.
    19. Charles R. Plott & Kathryn Zeiler, 2005. "The Willingness to Pay–Willingness to Accept Gap, the "Endowment Effect," Subject Misconceptions, and Experimental Procedures for Eliciting Valuations," American Economic Review, American Economic Association, vol. 95(3), pages 530-545, June.
    20. Christophe Van den Bulte & Yogesh V. Joshi, 2007. "New Product Diffusion with Influentials and Imitators," Marketing Science, INFORMS, vol. 26(3), pages 400-421, 05-06.
    21. David A. Schweidel & Eric T. Bradlow & Peter S. Fader, 2011. "Portfolio Dynamics for Customers of a Multiservice Provider," Management Science, INFORMS, vol. 57(3), pages 471-486, March.
    22. Anindya Ghose & Sang Pil Han, 2011. "An Empirical Analysis of User Content Generation and Usage Behavior on the Mobile Internet," Management Science, INFORMS, vol. 57(9), pages 1671-1691, September.
    23. Kaifu Zhang & Theodoros Evgeniou & V. Padmanabhan & Emile Richard, 2012. "Content Contributor Management and Network Effects in a UGC Environment," Marketing Science, INFORMS, vol. 31(3), pages 433-447, May.
    24. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    25. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    26. Olivier Toubia & Andrew T. Stephen, 2013. "Intrinsic vs. Image-Related Utility in Social Media: Why Do People Contribute Content to Twitter?," Marketing Science, INFORMS, vol. 32(3), pages 368-392, May.
    27. Jeonghye Choi & David R. Bell & Leonard M. Lodish, 2012. "Traditional and IS-Enabled Customer Acquisition on the Internet," Management Science, INFORMS, vol. 58(4), pages 754-769, April.
    28. Anindya Ghose & Sha Yang, 2009. "An Empirical Analysis of Search Engine Advertising: Sponsored Search in Electronic Markets," Management Science, INFORMS, vol. 55(10), pages 1605-1622, October.
    29. Friestad, Marian & Wright, Peter, 1995. "Persuasion Knowledge: Lay People's and Researchers' Beliefs about the Psychology of Advertising," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 22(1), pages 62-74, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pereira, Vijay & Laker, Benjamin & Bamel, Umesh & Sharma, Gagan Deep & Paul, Happy, 2024. "Customer engagement strategies within family businesses in emerging economies: A multi-method study," Journal of Business Research, Elsevier, vol. 174(C).
    2. Lei Wang & Ram Gopal & Ramesh Shankar & Joseph Pancras, 2022. "Forecasting venue popularity on location‐based services using interpretable machine learning," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2773-2788, July.
    3. Yue Jin & Yong Tan & Jinghua Huang, 2022. "Managing contributor performance in knowledge‐sharing communities: A dynamic perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 3945-3962, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
    2. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
    3. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    4. Lu, Shijie & Xie, Ying & Chen, Xingyu, 2023. "Immediate and enduring effects of digital badges on online content consumption and generation," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 146-163.
    5. Kannan, P.K. & Li, Hongshuang “Alice”, 2017. "Digital marketing: A framework, review and research agenda," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 22-45.
    6. Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.
    7. Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
    8. Saeed Tajdini, 2023. "The effects of internet search intensity for products on companies’ stock returns: a competitive intelligence perspective," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 352-365, September.
    9. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.
    10. V. Kumar & S. Sriram & Anita Luo & Pradeep K. Chintagunta, 2011. "Assessing the Effect of Marketing Investments in a Business Marketing Context," Marketing Science, INFORMS, vol. 30(5), pages 924-940, September.
    11. Peters, Kay & Chen, Yubo & Kaplan, Andreas M. & Ognibeni, Björn & Pauwels, Koen, 2013. "Social Media Metrics — A Framework and Guidelines for Managing Social Media," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 281-298.
    12. Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
    13. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    14. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    15. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2014. "Examining the Impact of Ranking on Consumer Behavior and Search Engine Revenue," Management Science, INFORMS, vol. 60(7), pages 1632-1654, July.
    16. Chang, Chun-Wei & Zhang, Jonathan Z., 2016. "The Effects of Channel Experiences and Direct Marketing on Customer Retention in Multichannel Settings," Journal of Interactive Marketing, Elsevier, vol. 36(C), pages 77-90.
    17. Klapdor, Sebastian & Anderl, Eva M. & von Wangenheim, Florian & Schumann, Jan H., 2014. "Finding the Right Words: The Influence of Keyword Characteristics on Performance of Paid Search Campaigns," Journal of Interactive Marketing, Elsevier, vol. 28(4), pages 285-301.
    18. Hongshuang (Alice) Li, 2022. "Converting free users to paid subscribers in the SaaS context: The impact of marketing touchpoints, message content, and usage," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2185-2203, May.
    19. Michael R. Ward, 2022. "Network engagement from learning friends’ preferences: evidence from a video gaming social network," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1239-1255, September.
    20. Peter Ebbes & Oded Netzer, 2022. "Using Social Network Activity Data to Identify and Target Job Seekers," Management Science, INFORMS, vol. 68(4), pages 3026-3046, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:64:y:2018:i:6:p:2473-2495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.