IDEAS home Printed from https://ideas.repec.org/a/spr/pardea/v3y2022i4d10.1007_s42985-022-00189-w.html
   My bibliography  Save this article

Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties

Author

Listed:
  • Andrea Medaglia

    (University of Pavia)

  • Andrea Tosin

    (Politecnico di Torino)

  • Mattia Zanella

    (University of Pavia)

Abstract

In this paper, we focus on the construction of a hybrid scheme for the approximation of non-Maxwellian kinetic models with uncertainties. In the context of multiagent systems, the introduction of a kernel at the kinetic level is useful to avoid unphysical interactions. The methods here proposed, combine a direct simulation Monte Carlo (DSMC) in the phase space together with stochastic Galerkin (sG) methods in the random space. The developed schemes preserve the main physical properties of the solution together with accuracy in the random space. The consistency of the methods is tested with respect to surrogate Fokker–Planck models that can be obtained in the quasi-invariant regime of parameters. Several applications of the schemes to non-Maxwellian models of multiagent systems are reported.

Suggested Citation

  • Andrea Medaglia & Andrea Tosin & Mattia Zanella, 2022. "Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-30, August.
  • Handle: RePEc:spr:pardea:v:3:y:2022:i:4:d:10.1007_s42985-022-00189-w
    DOI: 10.1007/s42985-022-00189-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42985-022-00189-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42985-022-00189-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Federico Bassetti & Giuseppe Toscani, 2010. "Explicit equilibria in a kinetic model of gambling," Papers 1002.3689, arXiv.org.
    2. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    3. Zanella, Mattia, 2020. "Structure preserving stochastic Galerkin methods for Fokker–Planck equations with background interactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 28-47.
    4. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    2. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-17.
    3. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    4. Toscani, Giuseppe, 2016. "Kinetic and mean field description of Gibrat’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 802-811.
    5. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    6. Marco Torregrossa & Giuseppe Toscani, 2017. "Wealth distribution in presence of debts. A Fokker--Planck description," Papers 1709.09858, arXiv.org.
    7. Giuseppe Toscani & Andrea Tosin & Mattia Zanella, 2019. "Multiple-interaction kinetic modelling of a virtual-item gambling economy," Papers 1904.07660, arXiv.org.
    8. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    9. Giuseppe Toscani, 2016. "Kinetic and mean field description of Gibrat's law," Papers 1606.04796, arXiv.org.
    10. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    11. Gualandi, Stefano & Toscani, Giuseppe, 2017. "Pareto tails in socio-economic phenomena: A kinetic description," Economics Discussion Papers 2017-111, Kiel Institute for the World Economy (IfW Kiel).
    12. Düring, Bertram & Georgiou, Nicos & Merino-Aceituno, Sara & Scalas, Enrico, 2022. "Continuum and thermodynamic limits for a simple random-exchange model," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 248-277.
    13. Luquini, Evandro & Montagna, Guido & Omar, Nizam, 2020. "Fusing non-conservative kinetic market models and evolutionary computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    14. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    15. Venkatasubramanian, Venkat & Luo, Yu & Sethuraman, Jay, 2015. "How much inequality in income is fair? A microeconomic game theoretic perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 435(C), pages 120-138.
    16. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    17. Hernández-Ramírez, E. & del Castillo-Mussot, M. & Hernández-Casildo, J., 2021. "World per capita gross domestic product measured nominally and across countries with purchasing power parity: Stretched exponential or Boltzmann–Gibbs distribution?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    18. Smerlak, Matteo, 2016. "Thermodynamics of inequalities: From precariousness to economic stratification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 40-50.
    19. Jos'e Mar'ia Sarabia & Faustino Prieto & Vanesa Jord'a, 2014. "A variation of the Dragulescu-Yakovenko income model," Papers 1406.5083, arXiv.org.
    20. Ricardo Lopez-Ruiz, 2012. "Complex Systems with Trivial Dynamics," Papers 1210.6481, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pardea:v:3:y:2022:i:4:d:10.1007_s42985-022-00189-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.