IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119314906.html
   My bibliography  Save this article

Fusing non-conservative kinetic market models and evolutionary computing

Author

Listed:
  • Luquini, Evandro
  • Montagna, Guido
  • Omar, Nizam

Abstract

This research establishes an identity between kinetic market models of econophysics and evolutionary algorithms of computer science. The fusion between the two approaches motivated a new market model with two basic operations: sampling and selection of states. The result is a non-conservative market that depends on the size of the sample set and the approach used to approximate the principle of energy conservation. This market exhibits complex dynamics with random walks for the sum of all the agents’ money and a scaling behavior for the money distribution in the population. Moreover, the fusion demonstrates how to add an evolutionary context to the kinetic market models and suggests a quasi-equilibrium version of those models. As a by-product, the work reveals a practical application as a new replacement rule for family competition evolutionary algorithms, which outperforms traditional ones in challenging combinatorial optimization problems.

Suggested Citation

  • Luquini, Evandro & Montagna, Guido & Omar, Nizam, 2020. "Fusing non-conservative kinetic market models and evolutionary computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314906
    DOI: 10.1016/j.physa.2019.122606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119314906
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
    2. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
    3. Els Heinsalu & Marco Patriarca, 2014. "Kinetic models of immediate exchange," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(8), pages 1-10, August.
    4. Federico Bassetti & Giuseppe Toscani, 2010. "Explicit equilibria in a kinetic model of gambling," Papers 1002.3689, arXiv.org.
    5. Joseph Persky, 1992. "Retrospectives: Pareto's Law," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 181-192, Spring.
    6. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
    7. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 267-276, March.
    8. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 17(1), pages 167-170, September.
    9. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    10. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    11. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    12. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boghosian, Bruce M. & Devitt-Lee, Adrian & Johnson, Merek & Li, Jie & Marcq, Jeremy A. & Wang, Hongyan, 2017. "Oligarchy as a phase transition: The effect of wealth-attained advantage in a Fokker–Planck description of asset exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 15-37.
    2. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    3. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    4. Düring, Bertram & Matthes, Daniel & Toscani, Giuseppe, 2008. "A Boltzmann-type approach to the formation of wealth distribution curves," CoFE Discussion Papers 08/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Shu-Heng Chen & Sai-Ping Li, 2011. "Econophysics: Bridges over a Turbulent Current," Papers 1107.5373, arXiv.org.
    6. Patriarca, Marco & Chakraborti, Anirban & Germano, Guido, 2006. "Influence of saving propensity on the power-law tail of the wealth distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 723-736.
    7. Jayadev, Arjun, 2008. "A power law tail in India's wealth distribution: Evidence from survey data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 270-276.
    8. N. Bagatella-Flores & M. Rodriguez-Achach & H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2014. "Wealth distribution of simple exchange models coupled with extremal dynamics," Papers 1407.7153, arXiv.org.
    9. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    10. Ghosh, Asim & Chatterjee, Arnab & Inoue, Jun-ichi & Chakrabarti, Bikas K., 2016. "Inequality measures in kinetic exchange models of wealth distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 465-474.
    11. Bagatella-Flores, N. & Rodríguez-Achach, M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2015. "Wealth distribution of simple exchange models coupled with extremal dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 168-175.
    12. Angle, John, 2011. "The particle system model of income and wealth more likely to imply an analogue of thermodynamics in social science," MPRA Paper 28864, University Library of Munich, Germany.
    13. Aydiner, Ekrem & Cherstvy, Andrey G. & Metzler, Ralf, 2018. "Wealth distribution, Pareto law, and stretched exponential decay of money: Computer simulations analysis of agent-based models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 278-288.
    14. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    15. Lorenzo Pareschi & Giuseppe Toscani, 2014. "Wealth distribution and collective knowledge. A Boltzmann approach," Papers 1401.4550, arXiv.org.
    16. Chakrabarti, Anindya S., 2011. "An almost linear stochastic map related to the particle system models of social sciences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4370-4378.
    17. D. S. Quevedo & C. J. Quimbay, 2019. "Piketty's second fundamental law of capitalism as an emergent property in a kinetic wealth-exchange model of economic growth," Papers 1903.00952, arXiv.org, revised Mar 2019.
    18. Adams Vallejos & Ignacio Ormazabal & Felix A. Borotto & Hernan F. Astudillo, 2018. "A new $\kappa$-deformed parametric model for the size distribution of wealth," Papers 1805.06929, arXiv.org.
    19. Lima, Hugo & Vieira, Allan R. & Anteneodo, Celia, 2022. "Nonlinear redistribution of wealth from a stochastic approach," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Nicolas Lanchier & Stephanie Reed, 2022. "Distribution of money on connected graphs with multiple banks," Papers 2201.11930, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119314906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.