IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1002.3689.html
   My bibliography  Save this paper

Explicit equilibria in a kinetic model of gambling

Author

Listed:
  • Federico Bassetti
  • Giuseppe Toscani

Abstract

We introduce and discuss a nonlinear kinetic equation of Boltzmann type which describes the evolution of wealth in a pure gambling process, where the entire sum of wealths of two agents is up for gambling, and randomly shared between the agents. For this equation the analytical form of the steady states is found for various realizations of the random fraction of the sum which is shared to the agents. Among others, Gibbs distribution appears as steady state in case of a uniformly distributed random fraction, while Gamma distribution appears for a random fraction which is Beta distributed. The case in which the gambling game is only conservative-in-the-mean is shown to lead to an explicit heavy tailed distribution.

Suggested Citation

  • Federico Bassetti & Giuseppe Toscani, 2010. "Explicit equilibria in a kinetic model of gambling," Papers 1002.3689, arXiv.org.
  • Handle: RePEc:arx:papers:1002.3689
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1002.3689
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Toscani, 2016. "Kinetic and mean field description of Gibrat's law," Papers 1606.04796, arXiv.org.
    2. Max Greenberg & H. Oliver Gao, 2024. "Twenty-five years of random asset exchange modeling," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-27, June.
    3. Düring, Bertram & Georgiou, Nicos & Merino-Aceituno, Sara & Scalas, Enrico, 2022. "Continuum and thermodynamic limits for a simple random-exchange model," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 248-277.
    4. Toscani, Giuseppe, 2016. "Kinetic and mean field description of Gibrat’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 802-811.
    5. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    6. Gualandi, Stefano & Toscani, Giuseppe, 2017. "Pareto tails in socio-economic phenomena: A kinetic description," Economics Discussion Papers 2017-111, Kiel Institute for the World Economy (IfW Kiel).
    7. Andrea Medaglia & Andrea Tosin & Mattia Zanella, 2022. "Monte Carlo stochastic Galerkin methods for non-Maxwellian kinetic models of multiagent systems with uncertainties," Partial Differential Equations and Applications, Springer, vol. 3(4), pages 1-30, August.
    8. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    9. Giuseppe Toscani & Andrea Tosin & Mattia Zanella, 2019. "Multiple-interaction kinetic modelling of a virtual-item gambling economy," Papers 1904.07660, arXiv.org.
    10. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-17.
    11. G. Dimarco & L. Pareschi & G. Toscani & M. Zanella, 2020. "Wealth distribution under the spread of infectious diseases," Papers 2004.13620, arXiv.org.
    12. Marco Torregrossa & Giuseppe Toscani, 2017. "Wealth distribution in presence of debts. A Fokker--Planck description," Papers 1709.09858, arXiv.org.
    13. Luquini, Evandro & Montagna, Guido & Omar, Nizam, 2020. "Fusing non-conservative kinetic market models and evolutionary computing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    14. Bassetti, Federico & Ladelli, Lucia, 2023. "Central limit theorem in uniform metrics for generalized Kac equations," Stochastic Processes and their Applications, Elsevier, vol. 166(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1002.3689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.