IDEAS home Printed from https://ideas.repec.org/p/osf/agrixi/xutyz_v1.html
   My bibliography  Save this paper

A research paper of Hossein Sabzian (2019), Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners, ArXiv, 54p

Author

Listed:
  • Ngo-Hoang, Dai-Long

Abstract

Nowadays, we are surrounded by a large number of complex phenomena such as virus epidemic, rumor spreading, social norms formation, emergence of new technologies, rise of new economic trends and disruption of traditional businesses. To deal with such phenomena, social scientists often apply reductionism approach where they reduce such phenomena to some lower-lever variables and model the relationships among them through a scheme of equations (e.g. Partial differential equations and ordinary differential equations). This reductionism approach which is often called equation based modeling (EBM) has some fundamental weaknesses in dealing with real world complex systems, for example in modeling how a housing bubble arises from a housing market, the whole market is reduced into some factors (i.e. economic agents) with unbounded rationality and often perfect information, and the model built from the relationships among such factors is used to explain the housing bubble while adaptability and the evolutionary nature of all engaged economic agents along with network effects go unaddressed. In tackling deficiencies of reductionism approach, in the past two decades, the Complex Adaptive System (CAS) framework has been found very influential. In contrast to reductionism approach, under this framework, the socio-economic phenomena such as housing bubbles are studied in an organic manner where the economic agents are supposed to be both boundedly rational and adaptive. According to CAS framework, the socio-economic aggregates such as housing bubbles emerge out of the ways agents of a socio-economic system interact and decide. As the most powerful methodology of CAS modeling, Agent-based modeling (ABM) has gained a growing application among academicians and practitioners. ABMs show how simple behavioral rules of agents and local interactions among them at micro-scale can generate surprisingly complex patterns at macro-scale. Despite a growing number of ABM publications, those researchers unfamiliar with this methodology have to study a number of works to understand (1) the why and what of ABMs and (2) the ways they are rigorously developed. Therefore, the major focus of this paper is to help social sciences researchers get a big picture of ABMs and know how to develop them both systematically and rigorously.

Suggested Citation

  • Ngo-Hoang, Dai-Long, 2019. "A research paper of Hossein Sabzian (2019), Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners, ArXiv, 54p," AgriXiv xutyz_v1, Center for Open Science.
  • Handle: RePEc:osf:agrixi:xutyz_v1
    DOI: 10.31219/osf.io/xutyz_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e6708c30f987d03e0496ea5/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/xutyz_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    2. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    3. Seth Frey & Robert L Goldstone, 2013. "Cyclic Game Dynamics Driven by Iterated Reasoning," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
    4. Geoffrey M. Hodgson, 1998. "The Approach of Institutional Economics," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 166-192, March.
    5. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    6. William A. Brock & Steven N. Durlauf, 2001. "Discrete Choice with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(2), pages 235-260.
    7. Axelrod, Robert, 1986. "An Evolutionary Approach to Norms," American Political Science Review, Cambridge University Press, vol. 80(4), pages 1095-1111, December.
    8. Olivier Barreteau, 2003. "Our Companion Modelling Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(2), pages 1-1.
    9. B L Heath & R R Hill, 2010. "Some insights into the emergence of agent-based modelling," Journal of Simulation, Taylor & Francis Journals, vol. 4(3), pages 163-169, September.
    10. Funtowicz, Silvio O. & Ravetz, Jerome R., 1994. "The worth of a songbird: ecological economics as a post-normal science," Ecological Economics, Elsevier, vol. 10(3), pages 197-207, August.
    11. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    12. Lane, David A, 1993. "Artificial Worlds and Economics, Part I," Journal of Evolutionary Economics, Springer, vol. 3(2), pages 89-107, May.
    13. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers Archive 5075, Iowa State University, Department of Economics.
    14. Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).
    15. Friederike Wall, 2016. "Agent-based modeling in managerial science: an illustrative survey and study," Review of Managerial Science, Springer, vol. 10(1), pages 135-193, January.
    16. Garcia, Rosanna & Rummel, Paul & Hauser, John, 2007. "Validating agent-based marketing models through conjoint analysis," Journal of Business Research, Elsevier, vol. 60(8), pages 848-857, August.
    17. P O Siebers & C M Macal & J Garnett & D Buxton & M Pidd, 2010. "Discrete-event simulation is dead, long live agent-based simulation!," Journal of Simulation, Taylor & Francis Journals, vol. 4(3), pages 204-210, September.
    18. Gerald Silverberg & Giovanni Dosi & Luigi Orsenigo, 2000. "Innovation, Diversity and Diffusion: A Self-Organisation Model," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 14, pages 410-432, Edward Elgar Publishing.
    19. Sandrine Jacob Leal & Mauro Napoletano, 2017. "Market Stability vs. Market Resilience: Regulatory Policies Experiments in an Agent-Based Model with Low- and High-Frequency Trading," Post-Print hal-01768876, HAL.
    20. Sean Snyder, 2013. "The Simple, the Complicated, and the Complex: Educational Reform Through the Lens of Complexity Theory," OECD Education Working Papers 96, OECD Publishing.
    21. Caplat, Paul & Anand, Madhur & Bauch, Chris, 2008. "Symmetric competition causes population oscillations in an individual-based model of forest dynamics," Ecological Modelling, Elsevier, vol. 211(3), pages 491-500.
    22. Lane, David A, 1993. "Artificial Worlds and Economics, Part II," Journal of Evolutionary Economics, Springer, vol. 3(3), pages 177-197, August.
    23. Ferrero, Juan C, 2004. "The statistical distribution of money and the rate of money transference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 575-585.
    24. Edmund Chattoe-Brown, 2013. "Why Sociology Should Use Agent Based Modelling," Sociological Research Online, , vol. 18(3), pages 31-41, August.
    25. Muaz Niazi & Amir Hussain, 2011. "Agent-based computing from multi-agent systems to agent-based models: a visual survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 479-499, November.
    26. Follmer, Hans & Horst, Ulrich & Kirman, Alan, 2005. "Equilibria in financial markets with heterogeneous agents: a probabilistic perspective," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 123-155, February.
    27. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Sabzian & Mohammad Ali Shafia & Ali Maleki & Seyeed Mostapha Seyeed Hashemi & Ali Baghaei & Hossein Gharib, 2019. "Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners," Papers 1901.08932, arXiv.org.
    2. Ngo-Hoang, Dai-Long, 2019. "A research paper of Hossein Sabzian (2019), Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners, ArXiv, 54p," AgriXiv xutyz, Center for Open Science.
    3. Hossein Sabzian & Alireza Aliahmadi & Adel Azar & Madjid Mirzaee, 2018. "Economic inequality and Islamic Charity: An exploratory agent-based modeling approach," Papers 1804.09284, arXiv.org.
    4. Hossein Sabzian & Mohammad Ali Shafia & Mehdi Ghazanfari & Ali Bonyadi Naeini, 2020. "Modeling the Adoption and Diffusion of Mobile Telecommunications Technologies in Iran: A Computational Approach Based on Agent-Based Modeling and Social Network Theory," Sustainability, MDPI, vol. 12(7), pages 1-36, April.
    5. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    6. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    7. Giorgio Fagiolo & Paul Windrum & Alessio Moneta, 2006. "Empirical Validation of Agent Based Models: A Critical Survey," LEM Papers Series 2006/14, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    9. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    10. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.
    11. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    12. Park, Ji-Won & Kim, Chae Un & Isard, Walter, 2012. "Permit allocation in emissions trading using the Boltzmann distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4883-4890.
    13. Bert, Federico E. & Rovere, Santiago L. & Macal, Charles M. & North, Michael J. & Podestá, Guillermo P., 2014. "Lessons from a comprehensive validation of an agent based-model: The experience of the Pampas Model of Argentinean agricultural systems," Ecological Modelling, Elsevier, vol. 273(C), pages 284-298.
    14. Geoffrey M. Hodgson & Thorbjørn Knudsen, 2008. "The Complex Evolution of a Simple Traffic Convention: the Functions and Implications of Habit," International Economic Association Series, in: János Kornai & László Mátyás & Gérard Roland (ed.), Institutional Change and Economic Behaviour, chapter 9, pages 178-199, Palgrave Macmillan.
    15. Dosi, G. & Virgillito, M.E., 2021. "In order to stand up you must keep cycling: Change and coordination in complex evolving economies," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 353-364.
    16. Windrum, Paul, 1999. "Simulation models of technological innovation: A Review," Research Memorandum 005, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    17. Ji-Won Park & Chae Un Kim & Walter Isard, 2011. "Permit Allocation in Emissions Trading using the Boltzmann Distribution," Papers 1108.2305, arXiv.org, revised Mar 2012.
    18. Dosi, Giovanni & Fagiolo, Giorgio & Roventini, Andrea, 2010. "Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1748-1767, September.
    19. Ballot, Gérard & Taymaz, Erol, 1993. "Firm-Sponsored Training, Technical Progress and Aggregate Performance in a Micro-Macro Model," Working Paper Series 402, Research Institute of Industrial Economics.
    20. Giovanni Dosi & Andrea Roventini, 2019. "More is different ... and complex! the case for agent-based macroeconomics," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 1-37, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:agrixi:xutyz_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.