IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v58y2021i3d10.1007_s12597-020-00497-y.html
   My bibliography  Save this article

Parametric approach to quadratically constrained multi-level multi-objective quadratic fractional programming

Author

Listed:
  • Vandana Goyal

    (Maharishi Markandeshwar (DU))

  • Namrata Rani

    (Maharishi Markandeshwar (DU))

  • Deepak Gupta

    (Maharishi Markandeshwar (DU))

Abstract

The paper proposed a method to study and obtain a set of Pareto optimal solutions or a set of representative solutions to a quadratically constrained multi-level multiobjective quadratic fractional programming problem. This problem involves several objectives to be fulfilled at multi levels under a common set of quadratic constraints. Initially, we used parametric approach to convert the fractional programming model to an equivalent non-fractional programming model by allocating a parametric vector to each fractional objective. Then, $$\varepsilon$$ ε -constraint method is used to convert this multiobjective programming model into an equivalent model with single objective. The solution of every previous level is followed by the next level in succession to find a solution which is suitable to each level decision maker. An algorithm and numerical example are also presented at the end of the paper to validate the proposed methodology for the Model.

Suggested Citation

  • Vandana Goyal & Namrata Rani & Deepak Gupta, 2021. "Parametric approach to quadratically constrained multi-level multi-objective quadratic fractional programming," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 557-574, September.
  • Handle: RePEc:spr:opsear:v:58:y:2021:i:3:d:10.1007_s12597-020-00497-y
    DOI: 10.1007/s12597-020-00497-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-020-00497-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-020-00497-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stein, Oliver & Still, Georg, 2002. "On generalized semi-infinite optimization and bilevel optimization," European Journal of Operational Research, Elsevier, vol. 142(3), pages 444-462, November.
    2. Suvasis Nayak & Akshay Kumar Ojha, 2019. "Solution approach to multi-objective linear fractional programming problem using parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 174-190, March.
    3. Y. Almogy & O. Levin, 1971. "A Class of Fractional Programming Problems," Operations Research, INFORMS, vol. 19(1), pages 57-67, February.
    4. Wolf, Hartmut, 1986. "Solving special nonlinear fractional programming problems via parametric linear programming," European Journal of Operational Research, Elsevier, vol. 23(3), pages 396-400, March.
    5. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Namrata Rani & Vandana Goyal & Deepak Gupta, 2021. "A solution procedure for multi-objective fully quadratic fractional optimization model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1447-1458, December.
    2. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    3. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    2. Suvasis Nayak & Akshay Kumar Ojha, 2019. "Solution approach to multi-objective linear fractional programming problem using parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 174-190, March.
    3. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    4. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "FGP approach to quadratically constrained multi-objective quadratic fractional programming with parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 594-602, June.
    5. S. Morteza Mirdehghan & Hassan Rostamzadeh, 2016. "Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional Programming: A Linear Programming Technique," Journal of Optimization, Hindawi, vol. 2016, pages 1-8, September.
    6. J.-Y. Lin & S. Schaible & R.-L. Sheu, 2010. "Minimization of Isotonic Functions Composed of Fractions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 581-601, September.
    7. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    8. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    9. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    10. M. Golbabapour & M. Reza Zahabi, 2024. "Sum rate maximization for mm-wave multi-user hybrid IRS-assisted MIMO systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 593-604, November.
    11. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    12. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    13. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    14. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    15. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    16. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    17. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    18. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    19. R. Paulavičius & C. S. Adjiman, 2020. "New bounding schemes and algorithmic options for the Branch-and-Sandwich algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 197-225, June.
    20. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:58:y:2021:i:3:d:10.1007_s12597-020-00497-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.