IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v135y2007i3d10.1007_s10957-007-9284-z.html
   My bibliography  Save this article

Minimization of the Ratio of Functions Defined as Sums of the Absolute Values

Author

Listed:
  • H. Konno

    (Chuo University)

  • K. Tsuchiya

    (Chuo University)

  • R. Yamamoto

    (Chuo University
    Mitsubishi UFJ Trust Investment Technology Institute Company)

Abstract

This paper addresses a new class of linearly constrained fractional programming problems where the objective function is defined as the ratio of two functions which are the sums of the absolute values of affine functions. This problem has an important application in financial optimization. This problem is a convex-convex type of fractional program which cannot be solved by standard algorithms. We propose a branch-and-bound algorithm and an integer programming algorithm. We demonstrate that a fairly large scale problem can be solved within a practical amount of time.

Suggested Citation

  • H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
  • Handle: RePEc:spr:joptap:v:135:y:2007:i:3:d:10.1007_s10957-007-9284-z
    DOI: 10.1007/s10957-007-9284-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9284-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9284-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Andrew W. & Mackinlay, A. Craig, 1997. "Maximizing Predictability In The Stock And Bond Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 102-134, January.
    2. R. Yamamoto & H. Konno, 2007. "An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 241-255, May.
    3. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroshi Konno & Yuuhei Morita & Rei Yamamoto, 2010. "A maximal predictability portfolio using absolute deviation reformulation," Computational Management Science, Springer, vol. 7(1), pages 47-60, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "FGP approach to quadratically constrained multi-objective quadratic fractional programming with parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 594-602, June.
    2. R. Yamamoto & H. Konno, 2007. "An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 241-255, May.
    3. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    4. Harold P. Benson, 2006. "Maximizing the ratio of two convex functions over a convex set," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(4), pages 309-317, June.
    5. M. Barkhagen & S. García & J. Gondzio & J. Kalcsics & J. Kroeske & S. Sabanis & A. Staal, 2023. "Optimising portfolio diversification and dimensionality," Journal of Global Optimization, Springer, vol. 85(1), pages 185-234, January.
    6. Michael Pinelis & David Ruppert, 2023. "Maximizing Portfolio Predictability with Machine Learning," Papers 2311.01985, arXiv.org.
    7. Hiroshi Konno & Yuuhei Morita & Rei Yamamoto, 2010. "A maximal predictability portfolio using absolute deviation reformulation," Computational Management Science, Springer, vol. 7(1), pages 47-60, January.
    8. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    9. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    10. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    11. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    12. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    13. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    14. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    15. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    16. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    17. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    18. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    19. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:135:y:2007:i:3:d:10.1007_s10957-007-9284-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.