IDEAS home Printed from https://ideas.repec.org/a/hin/jjopti/9175371.html
   My bibliography  Save this article

Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional Programming: A Linear Programming Technique

Author

Listed:
  • S. Morteza Mirdehghan
  • Hassan Rostamzadeh

Abstract

Multiobjective linear fractional programming (MOLFP) problems are the important problems with special structures in multiobjective optimization. In the MOLFP problems, the objective functions are linear fractional functions and the constraints are linear; that is, the feasible set is a polyhedron. In this paper, we suggest a method to identify the efficiency status of the feasible solutions of an MOLFP problem. By the proposed method, an efficient projection on the efficient space for an inefficient solution is obtained. The proposed problems are constructed in linear programming structures.

Suggested Citation

  • S. Morteza Mirdehghan & Hassan Rostamzadeh, 2016. "Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional Programming: A Linear Programming Technique," Journal of Optimization, Hindawi, vol. 2016, pages 1-8, September.
  • Handle: RePEc:hin:jjopti:9175371
    DOI: 10.1155/2016/9175371
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/7179/2016/9175371.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/7179/2016/9175371.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/9175371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Metev, Boyan & Gueorguieva, Dessislava, 2000. "A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 386-390, October.
    2. Illes, Tibor & Szirmai, Akos & Terlaky, Tamas, 1999. "The finite criss-cross method for hyperbolic programming," European Journal of Operational Research, Elsevier, vol. 114(1), pages 198-214, April.
    3. Jonathan S. H. Kornbluth & Ralph E. Steuer, 1981. "Multiple Objective Linear Fractional Programming," Management Science, INFORMS, vol. 27(9), pages 1024-1039, September.
    4. Y. Almogy & O. Levin, 1971. "A Class of Fractional Programming Problems," Operations Research, INFORMS, vol. 19(1), pages 57-67, February.
    5. P. C. Gilmore & R. E. Gomory, 1963. "A Linear Programming Approach to the Cutting Stock Problem---Part II," Operations Research, INFORMS, vol. 11(6), pages 863-888, December.
    6. Costa, Joao Paulo, 2007. "Computing non-dominated solutions in MOLFP," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1464-1475, September.
    7. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    2. João Costa & Maria Alves, 2013. "Enhancing computations of nondominated solutions in MOLFP via reference points," Journal of Global Optimization, Springer, vol. 57(3), pages 617-631, November.
    3. Suvasis Nayak & Akshay Kumar Ojha, 2019. "Solution approach to multi-objective linear fractional programming problem using parametric functions," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 174-190, March.
    4. Chergui, M. E-A & Moulai, M., 2007. "An exact method for a discrete multiobjective linear fractional optimization," MPRA Paper 12097, University Library of Munich, Germany, revised 09 Jan 2008.
    5. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    6. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    8. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    9. J.-Y. Lin & S. Schaible & R.-L. Sheu, 2010. "Minimization of Isotonic Functions Composed of Fractions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 581-601, September.
    10. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," Econometric Institute Research Papers ERS-2004-033-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Mojtaba Borza & Azmin Sham Rambely, 2021. "A Linearization to the Sum of Linear Ratios Programming Problem," Mathematics, MDPI, vol. 9(9), pages 1-10, April.
    12. Davtalab-Olyaie, Mostafa & Asgharian, Masoud, 2021. "On Pareto-optimality in the cross-efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 288(1), pages 247-257.
    13. Vandana Goyal & Namrata Rani & Deepak Gupta, 2021. "Parametric approach to quadratically constrained multi-level multi-objective quadratic fractional programming," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 557-574, September.
    14. Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.
    15. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    16. M. Golbabapour & M. Reza Zahabi, 2024. "Sum rate maximization for mm-wave multi-user hybrid IRS-assisted MIMO systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 593-604, November.
    17. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    18. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    19. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    20. Metrane, Abdelmoutalib & Soumis, François & Elhallaoui, Issmail, 2010. "Column generation decomposition with the degenerate constraints in the subproblem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 37-44, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjopti:9175371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.