IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v54y2017i3d10.1007_s12597-016-0293-2.html
   My bibliography  Save this article

Multi-objective semi-infinite variational problem and generalized invexity

Author

Listed:
  • Promila Kumar

    (University of Delhi)

  • Bharti Sharma

    (University of Delhi)

  • Jyoti Dagar

    (University of Delhi)

Abstract

In this paper, multiobjective semi-infinite variational problem (MSVP) has been considered. Relationship between efficiency, vector Kuhn Tucker point and vector Fritz John point for the stated problem have been established and authenticated by means of examples. Two duals namely Wolfe and Mond–Weir are purposed for (MSVP) and duality results are established under generalized invexity assumptions. Efficient solution of (MSVP) has been characterized by vector saddle point of a vector valued Lagrangian function of (MSVP). An equivalent (MSVP) is also constructed by a suitable modification of the objective function.

Suggested Citation

  • Promila Kumar & Bharti Sharma & Jyoti Dagar, 2017. "Multi-objective semi-infinite variational problem and generalized invexity," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 580-597, September.
  • Handle: RePEc:spr:opsear:v:54:y:2017:i:3:d:10.1007_s12597-016-0293-2
    DOI: 10.1007/s12597-016-0293-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-016-0293-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-016-0293-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Promila Kumar & Bharti Sharma, 2016. "Weak efficiency of higher order for multiobjective fractional variational problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 538-552, September.
    2. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    3. Tadeusz Antczak, 2014. "On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems," Journal of Global Optimization, Springer, vol. 59(4), pages 757-785, August.
    4. M. Arana-Jiménez & G. Ruiz-Garzón & A. Rufián-Lizana & R. Osuna-Gómez, 2012. "Weak efficiency in multiobjective variational problems under generalized convexity," Journal of Global Optimization, Springer, vol. 52(1), pages 109-121, January.
    5. Tadeusz Antczak, 2015. "Sufficient optimality criteria and duality for multiobjective variational control problems with $$G$$ G -type I objective and constraint functions," Journal of Global Optimization, Springer, vol. 61(4), pages 695-720, April.
    6. M. Arana Jiménez & F. Ortegón Gallego, 2013. "Duality and Weak Efficiency in Vector Variational Problems," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 547-553, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Promila Kumar & Bharti Sharma, 2016. "Weak efficiency of higher order for multiobjective fractional variational problem," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 538-552, September.
    2. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    3. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
    4. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    5. Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
    6. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    7. Shaojian Qu & Mark Goh & Soon-Yi Wu & Robert Souza, 2014. "Multiobjective DC programs with infinite convex constraints," Journal of Global Optimization, Springer, vol. 59(1), pages 41-58, May.
    8. Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
    9. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    10. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    11. Savin Treanţă, 2021. "Duality Theorems for ( ρ , ψ , d )-Quasiinvex Multiobjective Optimization Problems with Interval-Valued Components," Mathematics, MDPI, vol. 9(8), pages 1-12, April.
    12. Nazih Abderrazzak Gadhi, 2019. "Necessary optimality conditions for a nonsmooth semi-infinite programming problem," Journal of Global Optimization, Springer, vol. 74(1), pages 161-168, May.
    13. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    14. Rafael Correa & Marco A. López & Pedro Pérez-Aros, 2023. "Optimality Conditions in DC-Constrained Mathematical Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1191-1225, September.
    15. Takayuki Okuno & Masao Fukushima, 2014. "Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints," Journal of Global Optimization, Springer, vol. 60(1), pages 25-48, September.
    16. Lou, Yingyan & Yin, Yafeng & Lawphongpanich, Siriphong, 2010. "Robust congestion pricing under boundedly rational user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 15-28, January.
    17. Jan Schwientek & Tobias Seidel & Karl-Heinz Küfer, 2021. "A transformation-based discretization method for solving general semi-infinite optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 83-114, February.
    18. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    19. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    20. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:54:y:2017:i:3:d:10.1007_s12597-016-0293-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.