IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v59y2014i1p41-58.html
   My bibliography  Save this article

Multiobjective DC programs with infinite convex constraints

Author

Listed:
  • Shaojian Qu
  • Mark Goh
  • Soon-Yi Wu
  • Robert Souza

Abstract

New results are established for multiobjective DC programs with infinite convex constraints (MOPIC) that are defined on Banach spaces (finite or infinite dimensional) with objectives given as the difference of convex functions. This class of problems can also be called multiobjective DC semi-infinite and infinite programs, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Such problems have not been studied as yet. Necessary and sufficient optimality conditions for the weak Pareto efficiency are introduced. Further, we seek a connection between multiobjective linear infinite programs and MOPIC. Both Wolfe and Mond-Weir dual problems are presented, and corresponding weak, strong, and strict converse duality theorems are derived for these two problems respectively. We also extend above results to multiobjective fractional DC programs with infinite convex constraints. The results obtained are new in both semi-infinite and infinite frameworks. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Shaojian Qu & Mark Goh & Soon-Yi Wu & Robert Souza, 2014. "Multiobjective DC programs with infinite convex constraints," Journal of Global Optimization, Springer, vol. 59(1), pages 41-58, May.
  • Handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:41-58
    DOI: 10.1007/s10898-013-0091-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0091-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0091-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C.F. Wen & S.Y. Wu, 2004. "Duality theorems and algorithms for linear programming in measure spaces," Journal of Global Optimization, Springer, vol. 30(2), pages 207-233, November.
    2. N. J. Huang & J. Li & S. Y. Wu, 2009. "Optimality Conditions for Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 323-342, August.
    3. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    4. V. Jeyakumar, 1997. "Asymptotic Dual Conditions Characterizing Optimality for Infinite Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 93(1), pages 153-165, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marius Durea & Radu Strugariu & Christiane Tammer, 2013. "Scalarization in Geometric and Functional Vector Optimization Revisited," Journal of Optimization Theory and Applications, Springer, vol. 159(3), pages 635-655, December.
    2. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    3. V. Jeyakumar & G. M. Lee & N. Dinh, 2004. "Lagrange Multiplier Conditions Characterizing the Optimal Solution Sets of Cone-Constrained Convex Programs," Journal of Optimization Theory and Applications, Springer, vol. 123(1), pages 83-103, October.
    4. Peter Kirst & Oliver Stein, 2016. "Solving Disjunctive Optimization Problems by Generalized Semi-infinite Optimization Techniques," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1079-1109, June.
    5. Stein, Oliver, 2012. "How to solve a semi-infinite optimization problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 312-320.
    6. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    7. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    8. Tadeusz Antczak, 2022. "Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints," 4OR, Springer, vol. 20(3), pages 417-442, September.
    9. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
    10. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    11. Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
    12. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    13. Hatim Djelassi & Alexander Mitsos, 2021. "Global Solution of Semi-infinite Programs with Existence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 863-881, March.
    14. Ryoichi Nishimura & Shunsuke Hayashi & Masao Fukushima, 2013. "SDP reformulation for robust optimization problems based on nonconvex QP duality," Computational Optimization and Applications, Springer, vol. 55(1), pages 21-47, May.
    15. T. Antczak, 2016. "Optimality Conditions in Quasidifferentiable Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 708-725, November.
    16. Feng Guo & Xiaoxia Sun, 2020. "On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 669-699, April.
    17. Cao Thanh Tinh & Thai Doan Chuong, 2022. "Conic Linear Programming Duals for Classes of Quadratic Semi-Infinite Programs with Applications," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 570-596, August.
    18. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    19. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    20. Nithirat Sisarat & Rabian Wangkeeree & Tamaki Tanaka, 2020. "Sequential characterizations of approximate solutions in convex vector optimization problems with set-valued maps," Journal of Global Optimization, Springer, vol. 77(2), pages 273-287, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:59:y:2014:i:1:p:41-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.