IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i2d10.1007_s10845-015-1117-6.html
   My bibliography  Save this article

Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions

Author

Listed:
  • Mojtaba Afzalirad

    (Mazandaran University of Science and Technology)

  • Masoud Shafipour

    (Mazandaran University of Science and Technology)

Abstract

This study addresses a resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions. Majority of the traditional scheduling problems in parallel machine environment deal with machine as the only resource. However, other resources such as labors, tools, jigs, fixtures, pallets, dies, and industrial robots are not only required for processing jobs but also are often restricted. Considering other resources makes the scheduling problems more realistic and practical to implement in manufacturing environments. First, an integer mathematical programming model with the objective of minimizing makespan is developed for this problem. Noteworthy, due to NP-hardness of the considered problem, application of meta-heuristic is avoidable. Furthermore, two new genetic algorithms including a pure genetic algorithm and a genetic algorithm along with a heuristic procedure are proposed to tackle this problem. With regard to the fact that appropriate design of the parameters has a significant effect on the performance of algorithms, hence, we calibrate the parameters of these algorithms by using the response surface method. The performance of the proposed algorithms is evaluated by a number of numerical examples. The computational results demonstrated that the proposed genetic algorithm is an effective and appropriate approach for our investigated problem.

Suggested Citation

  • Mojtaba Afzalirad & Masoud Shafipour, 2018. "Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 423-437, February.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1117-6
    DOI: 10.1007/s10845-015-1117-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1117-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1117-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edis, Emrah B. & Oguz, Ceyda & Ozkarahan, Irem, 2013. "Parallel machine scheduling with additional resources: Notation, classification, models and solution methods," European Journal of Operational Research, Elsevier, vol. 230(3), pages 449-463.
    2. Purushothaman Damodaran & Neal S. Hirani & Mario C. Velez-Gallego, 2009. "Scheduling identical parallel batch processing machines to minimise makespan using genetic algorithms," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 3(2), pages 187-206.
    3. Chen, Jeng-Fung & Wu, Tai-Hsi, 2006. "Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints," Omega, Elsevier, vol. 34(1), pages 81-89, January.
    4. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    5. Liao, Lu-Wen & Sheen, Gwo-Ji, 2008. "Parallel machine scheduling with machine availability and eligibility constraints," European Journal of Operational Research, Elsevier, vol. 184(2), pages 458-467, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongliang Zhang & Yujuan Wu & Ruilin Pan & Gongjie Xu, 2021. "Two-stage parallel speed-scaling machine scheduling under time-of-use tariffs," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 91-112, January.
    2. Xiaoyun Xiong & Peng Zhou & Yunqiang Yin & T. C. E. Cheng & Dengfeng Li, 2019. "An exact branch‐and‐price algorithm for multitasking scheduling on unrelated parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 502-516, September.
    3. Maximilian Moser & Nysret Musliu & Andrea Schaerf & Felix Winter, 2022. "Exact and metaheuristic approaches for unrelated parallel machine scheduling," Journal of Scheduling, Springer, vol. 25(5), pages 507-534, October.
    4. Bruno de Athayde Prata & Levi Ribeiro Abreu & José Ytalo Ferreira Lima, 2021. "Heuristic methods for the single-machine scheduling problem with periodical resource constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 524-546, July.
    5. Jesús Isaac Vázquez-Serrano & Leopoldo Eduardo Cárdenas-Barrón & Rodrigo E. Peimbert-García, 2021. "Agent Scheduling in Unrelated Parallel Machines with Sequence- and Agent–Machine–Dependent Setup Time Problem," Mathematics, MDPI, vol. 9(22), pages 1-34, November.
    6. Mohammad Reza Bazargan-Lari & Sharareh Taghipour & Arash Zaretalab & Mani Sharifi, 2022. "Production scheduling optimization for parallel machines subject to physical distancing due to COVID-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 503-527, June.
    7. Bentao Su & Naiming Xie & Yingjie Yang, 2021. "Hybrid genetic algorithm based on bin packing strategy for the unrelated parallel workgroup scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 957-969, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    2. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    3. Mensendiek, Arne & Gupta, Jatinder N.D. & Herrmann, Jan, 2015. "Scheduling identical parallel machines with fixed delivery dates to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 243(2), pages 514-522.
    4. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    5. Chang, Zhiqi & Ding, Jian-Ya & Song, Shiji, 2019. "Distributionally robust scheduling on parallel machines under moment uncertainty," European Journal of Operational Research, Elsevier, vol. 272(3), pages 832-846.
    6. Jianfu Chen & Kai Li & Chengbin Chu & Abderrahim Sahli, 2024. "A simplified swarm optimization algorithm to minimize makespan on non-identical parallel machines with unequal job release times under non-renewable resource constraints," Operational Research, Springer, vol. 24(2), pages 1-27, June.
    7. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    8. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    9. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    10. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.
    11. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    12. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    13. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    14. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2021. "Scheduling Human-Robot Teams in collaborative working cells," International Journal of Production Economics, Elsevier, vol. 235(C).
    15. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    16. Muter, İbrahim, 2020. "Exact algorithms to minimize makespan on single and parallel batch processing machines," European Journal of Operational Research, Elsevier, vol. 285(2), pages 470-483.
    17. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    18. Felipe Campelo & Fernanda Takahashi, 2019. "Sample size estimation for power and accuracy in the experimental comparison of algorithms," Journal of Heuristics, Springer, vol. 25(2), pages 305-338, April.
    19. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    20. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1117-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.