Closest target setting with minimum improvement costs considering demand and resource mismatches
Author
Abstract
Suggested Citation
DOI: 10.1007/s12351-023-00783-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
- Kristiaan Kerstens & Ignace Van de Woestyne, 2021.
"Cost functions are nonconvex in the outputs when the technology is nonconvex: convexification is not harmless,"
Annals of Operations Research, Springer, vol. 305(1), pages 81-106, October.
- Kristiaan Kerstens & Ignace van de Woestyne, 2021. "Cost functions are nonconvex in the outputs when the technology is nonconvex: convexification is not harmless," Post-Print hal-03274911, HAL.
- Chia-Yen Lee & Andrew Johnson, 2015. "Effective production: measuring of the sales effect using data envelopment analysis," Annals of Operations Research, Springer, vol. 235(1), pages 453-486, December.
- Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018.
"Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency,"
Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
- Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2016. "Operational performance management of the power industry: A distinguishing analysis between effectiveness and efficiency," CEEP-BIT Working Papers 93, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Lee, Chia-Yen, 2016. "Most productive scale size versus demand fulfillment: A solution to the capacity dilemma," European Journal of Operational Research, Elsevier, vol. 248(3), pages 954-962.
- W. Briec & J. B. Lesourd, 1999. "Metric Distance Function and Profit: Some Duality Results," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 15-33, April.
- Du, Juan & Liang, Liang & Chen, Yao & Bi, Gong-bing, 2010. "DEA-based production planning," Omega, Elsevier, vol. 38(1-2), pages 105-112, February.
- Briec, W. & Lemaire, B., 1999. "Technical efficiency and distance to a reverse convex set," European Journal of Operational Research, Elsevier, vol. 114(1), pages 178-187, April.
- Bogetoft, Peter & Fare, Rolf & Obel, Borge, 2006.
"Allocative efficiency of technically inefficient production units,"
European Journal of Operational Research, Elsevier, vol. 168(2), pages 450-462, January.
- Bogetoft, Peter & Fare, Rolf, 1999. "Allocative Efficiency of Technically Inefficient Production Units," Unit of Economics Working Papers 24217, Royal Veterinary and Agricultural University, Food and Resource Economic Institute.
- Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
- Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
- Frances Frei & Patrick Harker, 1999. "Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA," Journal of Productivity Analysis, Springer, vol. 11(3), pages 275-300, June.
- Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
- Asmild, Mette & Paradi, Joseph C. & Reese, David N. & Tam, Fai, 2007. "Measuring overall efficiency and effectiveness using DEA," European Journal of Operational Research, Elsevier, vol. 178(1), pages 305-321, April.
- Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
- Xu Wang & Kuan Lu & Jianming Shi & Takashi Hasuike, 2020. "A New MIP Approach on the Least Distance Problem in DEA," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(06), pages 1-18, December.
- Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
- Walter Briec & Hervé Leleu, 2003. "Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 20(1), pages 71-96, July.
- Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
- Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
- W. Briec, 1999. "Hölder Distance Function and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 11(2), pages 111-131, April.
- Feifei Jin & Jinpei Liu & Ligang Zhou & Luis Martínez, 2021. "Consensus-Based Linguistic Distribution Large-Scale Group Decision Making Using Statistical Inference and Regret Theory," Group Decision and Negotiation, Springer, vol. 30(4), pages 813-845, August.
- Morita, Hiroshi & Hirokawa, Koichiro & Zhu, Joe, 2005. "A slack-based measure of efficiency in context-dependent data envelopment analysis," Omega, Elsevier, vol. 33(4), pages 357-362, August.
- Pendharkar, Parag C., 2015. "Cost minimizing target setting heuristics for making inefficient decision-making units efficient," International Journal of Production Economics, Elsevier, vol. 162(C), pages 1-12.
- Sebastián Lozano & Gabriel Villa, 2010. "Gradual technical and scale efficiency improvement in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 123-136, January.
- Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
- Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
- Jiawei Li & Qingbo Huang & Yan Li, 2021. "Stepwise Improvement for Environmental Performance of Transportation Industry in China: A DEA Approach Based on Closest Targets," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, March.
- Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
- Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
- Chun Sun & Sheng Ang & Fangqing Wei & Dawei Wang & Feng Yang, 2024. "Supply–demand effectiveness: capturing the effects of supply and demand mismatches in operational performance measurement," Operational Research, Springer, vol. 24(2), pages 1-22, June.
- Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
- Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
- J. Vakili, 2017. "New Models for Computing the Distance of DMUs to the Weak Efficient Boundary of Convex and Nonconvex PPSs in DEA," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-20, December.
- Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
- Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017.
"The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects,"
Omega, Elsevier, vol. 71(C), pages 1-10.
- Aparicio, Juan & Cordero, Jose M. & Pastor, Jesús, 2016. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: modelling and computational aspects," MPRA Paper 72630, University Library of Munich, Germany.
- Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
- Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
- Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
- Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
- Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
- Juan Aparicio & José L. Zofío & Jesús T. Pastor, 2023. "Decomposing Economic Efficiency into Technical and Allocative Components: An Essential Property," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 98-129, April.
- Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
- J. Vakili & R. Sadighi Dizaji, 2021. "The closest strong efficient targets in the FDH technology: an enumeration method," Journal of Productivity Analysis, Springer, vol. 55(2), pages 91-105, April.
- Paradi, Joseph C. & Zhu, Haiyan & Edelstein, Barak, 2012. "Identifying managerial groups in a large Canadian bank branch network with a DEA approach," European Journal of Operational Research, Elsevier, vol. 219(1), pages 178-187.
- Mette Asmild & Tomas Baležentis & Jens Leth Hougaard, 2016. "Multi-directional productivity change: MEA-Malmquist," Journal of Productivity Analysis, Springer, vol. 46(2), pages 109-119, December.
- Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
- Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
More about this item
Keywords
Closest target; Demand mismatch; Resource mismatch; Data envelopment analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:23:y:2023:i:3:d:10.1007_s12351-023-00783-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.