IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i3p927-939.html
   My bibliography  Save this article

Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects

Author

Listed:
  • Zhu, Qingyuan
  • Aparicio, Juan
  • Li, Feng
  • Wu, Jie
  • Kou, Gang

Abstract

Within the framework of data envelopment analysis (DEA) methodology, the problem of determining the closest targets on the efficient frontier is receiving increased attention from both academics and practitioners. In the literature, the number of approaches to this problem are increasing, most of which are based on the computation of closest targets. Some of the existing approaches satisfy the important property of strong monotonicity. However, they tend to either propose a complex conceptual framework and multi-stage procedure or change the original definition of Hölder distance functions. Clearly, these approaches cannot be solved easily when there are many “extreme” efficient units with multiple inputs and multiple outputs. To solve this problem, we consider the notion of the extended facet production possibility set (EFPPS). In particular, we propose a Mixed Integer Linear Program (MILP) to find the closest efficient targets and that is related to a measure that satisfies the strong monotonicity property. Additionally, in this paper, the proposed approach is applied to real data from 38 universities involved in China's 985 university project.

Suggested Citation

  • Zhu, Qingyuan & Aparicio, Juan & Li, Feng & Wu, Jie & Kou, Gang, 2022. "Determining closest targets on the extended facet production possibility set in data envelopment analysis: Modeling and computational aspects," European Journal of Operational Research, Elsevier, vol. 296(3), pages 927-939.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:3:p:927-939
    DOI: 10.1016/j.ejor.2021.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721003337
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Jie & Liang, Liang & Yang, Feng, 2009. "Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method," European Journal of Operational Research, Elsevier, vol. 197(2), pages 722-730, September.
    2. A. Bessent & W. Bessent & J. Elam & T. Clark, 1988. "Efficiency Frontier Determination by Constrained Facet Analysis," Operations Research, INFORMS, vol. 36(5), pages 785-796, October.
    3. Joe Zhu, 2014. "Quantitative Models for Performance Evaluation and Benchmarking," International Series in Operations Research and Management Science, Springer, edition 3, number 978-3-319-06647-9, December.
    4. Li, Yongjun & Wang, Lizheng & Li, Feng, 2021. "A data-driven prediction approach for sports team performance and its application to National Basketball Association," Omega, Elsevier, vol. 98(C).
    5. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min & Lin, Bruce J.Y., 2013. "A survey of DEA applications," Omega, Elsevier, vol. 41(5), pages 893-902.
    6. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    9. Ando, Kazutoshi & Minamide, Masato & Sekitani, Kazuyuki & Shi, Jianming, 2017. "Monotonicity of minimum distance inefficiency measures for Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 260(1), pages 232-243.
    10. Joe Zhu, 2004. "Imprecise DEA via Standard Linear DEA Models with a Revisit to a Korean Mobile Telecommunication Company," Operations Research, INFORMS, vol. 52(2), pages 323-329, April.
    11. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    12. Joe Zhu, 2014. "Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 1, pages 1-9, Springer.
    13. Robert Russell, R., 1990. "Continuity of measures of technical efficiency," Journal of Economic Theory, Elsevier, vol. 51(2), pages 255-267, August.
    14. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    15. Fukuyama, Hirofumi & Sekitani, Kazuyuki, 2012. "Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 221(1), pages 165-174.
    16. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    17. Walter Briec & Hervé Leleu, 2003. "Dual Representations of Non-Parametric Technologies and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 20(1), pages 71-96, July.
    18. Feng Li & Ali Emrouznejad & Guo-liang Yang & Yongjun Li, 2020. "Carbon emission abatement quota allocation in Chinese manufacturing industries: An integrated cooperative game data envelopment analysis approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1259-1288, August.
    19. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    20. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    21. Frances Frei & Patrick Harker, 1999. "Projections Onto Efficient Frontiers: Theoretical and Computational Extensions to DEA," Journal of Productivity Analysis, Springer, vol. 11(3), pages 275-300, June.
    22. Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
    23. O. B. Olesen & N. C. Petersen, 1996. "Indicators of Ill-Conditioned Data Sets and Model Misspecification in Data Envelopment Analysis: An Extended Facet Approach," Management Science, INFORMS, vol. 42(2), pages 205-219, February.
    24. W. Briec, 1999. "Hölder Distance Function and Measurement of Technical Efficiency," Journal of Productivity Analysis, Springer, vol. 11(2), pages 111-131, April.
    25. Lozano, S. & Hinojosa, M.A. & Mármol, A.M., 2019. "Extending the bargaining approach to DEA target setting," Omega, Elsevier, vol. 85(C), pages 94-102.
    26. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    27. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    28. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    29. Juan Aparicio & Fernando Borras & Lidia Ortiz & Jesus T. Pastor, 2014. "Benchmarking in Healthcare: An Approach Based on Closest Targets," International Series in Operations Research & Management Science, in: Ali Emrouznejad & Emilyn Cabanda (ed.), Managing Service Productivity, edition 127, pages 67-91, Springer.
    30. Lim, Sungmook & Zhu, Joe, 2019. "Primal-dual correspondence and frontier projections in two-stage network DEA models," Omega, Elsevier, vol. 83(C), pages 236-248.
    31. Green, Rodney H. & Doyle, John R. & Cook, Wade D., 1996. "Efficiency bounds in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 89(3), pages 482-490, March.
    32. Kao, Chiang & Liu, Shiang-Tai, 2020. "A slacks-based measure model for calculating cross efficiency in data envelopment analysis," Omega, Elsevier, vol. 95(C).
    33. Briec, W. & Lemaire, B., 1999. "Technical efficiency and distance to a reverse convex set," European Journal of Operational Research, Elsevier, vol. 114(1), pages 178-187, April.
    34. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    35. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    36. Zhang, Han & Patton, Donald & Kenney, Martin, 2013. "Building global-class universities: Assessing the impact of the 985 Project," Research Policy, Elsevier, vol. 42(3), pages 765-775.
    37. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    38. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xifan Chen & Qingyuan Zhu & Chengzhen Xu & Zhiyang Shen & Malin Song, 2024. "Energy and environmental efficiency of China's regional electric power industry by considering renewable energy constraints," Energy & Environment, , vol. 35(2), pages 927-949, March.
    2. Lozano, Sebastián, 2023. "Bargaining approach for efficiency assessment and target setting with fixed-sum variables," Omega, Elsevier, vol. 114(C).
    3. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    4. Feimei Liao & Yaoyao Hu & Yinghao Sun & Songqin Ye, 2024. "Does digital empowerment affect corporate green investment efficiency?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23085-23111, September.
    5. An, Qingxian & Tao, Xiangyang & Chen, Xiaohong, 2023. "Nested frontier-based best practice regulation under asymmetric information in a principal–agent framework," European Journal of Operational Research, Elsevier, vol. 306(1), pages 269-285.
    6. Zhu, Qingyuan & Xu, Shuqi & Sun, Jiasen & Li, Xingchen & Zhou, Dequn, 2022. "Energy efficiency evaluation of power supply system: A data-driven approach based on shared resources," Applied Energy, Elsevier, vol. 312(C).
    7. Lei Li & Ruizeng Zhao & Feihua Huang, 2023. "Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction," Sustainability, MDPI, vol. 15(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    2. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    3. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    4. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    5. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    6. Juan Aparicio & Jesus T. Pastor & Jose L. Sainz-Pardo & Fernando Vidal, 2020. "Estimating and decomposing overall inefficiency by determining the least distance to the strongly efficient frontier in data envelopment analysis," Operational Research, Springer, vol. 20(2), pages 747-770, June.
    7. Aparicio, Juan & Garcia-Nove, Eva M. & Kapelko, Magdalena & Pastor, Jesus T., 2017. "Graph productivity change measure using the least distance to the pareto-efficient frontier in data envelopment analysis," Omega, Elsevier, vol. 72(C), pages 1-14.
    8. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    9. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    10. Fangqing Wei & Yanan Fu & Feng Yang & Chun Sun & Sheng Ang, 2023. "Closest target setting with minimum improvement costs considering demand and resource mismatches," Operational Research, Springer, vol. 23(3), pages 1-29, September.
    11. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    12. Sekitani, Kazuyuki & Zhao, Yu, 2023. "Least-distance approach for efficiency analysis: A framework for nonlinear DEA models," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1296-1310.
    13. Javad Vakili & Hanieh Amirmoshiri & Rashed Khanjani Shiraz & Hirofumi Fukuyama, 2020. "A modified distance friction minimization approach in data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 789-804, May.
    14. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    15. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    16. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    17. Xiaohong Liu & Qingyuan Zhu & Junfei Chu & Xiang Ji & Xingchen Li, 2019. "Environmental Performance and Benchmarking Information for Coal-Fired Power Plants in China: A DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1287-1302, December.
    18. Juan Aparicio & José L. Zofío & Jesús T. Pastor, 2023. "Decomposing Economic Efficiency into Technical and Allocative Components: An Essential Property," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 98-129, April.
    19. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    20. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:3:p:927-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.